

16.11.2018

Grid Code Specifications for Power Generating Facilities VJV2018

Contents

С	ontents	
1	Introduction	6
ว	Terms and definitions	7
~		
3	Scope	11
4	Confidentiality	13
5	Specific study requirements	14
6 re	Compliance monitoring process of the Specifications, continuous monitoring, and	15
	6.1 Responsibilities, obligations and rights during the compliance monitoring process and	10
	during continuous monitoring	15
	6.1.1 Responsibilities, obligations and rights of the power generating facility owner and the relevant network operator.	15
	6.1.2 Fingrid's responsibilities, obligations and rights	16
	6.2 Amendment of power generating facility technical characteristics	17
	6.3 Power generating facility projects progressing in stages	17
	for power generating facilities	18
	6.4.1 Compliance monitoring process and operational notification procedure for a type /	4
	power generating facility	18
	6.4.2 Compliance monitoring process and operational notification procedure for a type I	B
	6.4.3 Compliance monitoring process and operational notification procedure for a type I	יפו ר
	power generating facility	20
7	Documentation and delivery of power generating facility data	25
	7.1 Data to be delivered for a type A power generating facility	25
	7.2 Data to be delivered for a type B power generating facility	25
	7.3 Data to be delivered for a type C power generating facility	27
	7.4 Data to be derivered for a type D power generating facility	27
	7.4.2 Data to be delivered	27
8	Derogations	33
9	Real-time measurements, data exchange and instrumentation	34
-	9.1 Real-time measurements and data exchange for type A power generating facilities	34
	9.2 Real-time measurements and data exchange for type B power generating facilities	34
	9.3 Real-time measurements and data exchange for type C and D power generating	<u> </u>
	Tacilities	34 35
		30 0 -
10	J General requirements	37
	10.2 General requirements for a type A power generating facility	37

10.2.1 Operating voltage and frequency range of the power generating facility	37
10.2.2 Rate of change of frequency withstand capability	37
10.2.3 Limited frequency sensitive mode – overfrequency (LFSM-O)	38
10.2.4 Active power control	39
10.2.5 Admissible reduction in active power production	39
10.2.6 Remote control capability	39
10.2.7 Automatic connection	39
10.3 General requirements for a type B power generating facility	
10.3.1 Remote control capability	39
10.3.2 Fault-ride-through capability	40
10.3.3 Fault current injection of a power park module	42
10.3.4 Recovery of active power after a voltage disturbance	43
10.3.5 Protection	43
10.4 General requirements for a type C power generating facility	45
10.4 1 Control and remote use of the power generating facility	45
10.4.2 Limited frequency sensitive mode – underfrequency (LESM-LI)	45
10.4.3 Requirements relating to stability	46
10.4.4 Power quality	4 0
10.4.5 Earthing of the neutral point of the main transformer	, /
10.4.6 Black start capability and island operation	+/
10.5 Coporal requirements for a type D power generating facility	47
10.5 Ceneral requirements for a type D power generating facility	47
10.5.2 Equit ride through capability	4 7 70
10.5.2 Calculation of the operation of the power generating facility during voltage	40
disturbance	51
10.5.4 Requirements relating to synchronisation	
Requirements applicable to synchronous power generating modules	54
11 Active power control and frequency control of synchronous power generating	
modules	54
11.1 Active power control and frequency control of type A synchronous power generating	
modules	54
11.2 Active power control and frequency control of type B synchronous power generating	-
modules	54
11.3 Active power control and frequency control of type C and D synchronous power	
generating modules	54
11.3.1 Fingrid's rights during disturbance in the power system	
11.3.2 Active power and start-up time of a power generating facility	54
11.3.3 Implementation of active power control and frequency control	
11.3.4 Rate of change and adjustment range of active power	57
11.3.5 House load operation	
12 Reactive power capacity of synchronous power generating modules	60
12.1 Reactive power capacity of type B synchronous power generating modules	60
12.2 Reactive power capacity of type C and D synchronous power generating modules	60
12.2.1 Reactive power capacity required from generators	60
12.2.2 Reactive power capacity required from synchronous power generating modules	60
12.2.3 Supplementary reactive power capacity	00
	60 61
12.2.4 Reactive power capacity calculation	60 61 62

13 Voltage control of synchronous power generating modules	64
13.1 Voltage control of type B synchronous power generating modules	64
13.2 Voltage control of type C synchronous power generating modules	64
13.2.1 Operation and method of voltage control	64
13.2.2 Performance calculation of the generator's automatic voltage regulator	04
13.2.3 Ferrormance calculation of the generator's automatic voltage regulator of generator	60
13.2.4 Modes and functionalities of the automatic voltage regulator of generator	66
13.2.6 Limiters and protection related to the functioning of voltage control	66
13.2.7 Other components contributing to the voltage control and reactive power control	ol of
the power generating facility	67
13.3 Voltage control of type D synchronous power generating modules	67
14 Commissioning testing of synchronous power generating modules	68
14.1 Shared requirements for the commissioning testing of all synchronous power gene	rating
modules	68
14.2 Commissioning testing of type B synchronous power generating modules	68
14.3 Commissioning testing of type C synchronous power generating modules	69
14.3.1 Commissioning test plans, measurements and data exchange	69
14.3.2 Substituting the commissioning testing	70
14.3.3 Documentation and acceptance of commissioning testing	71
14.3.4 Functions to be verified in commissioning testing	12
14.4 Commissioning testing of type D synchronous power generating modules	/b
15 Modelling requirements applicable to synchronous power generating modules	77
15.1 Modelling requirements of type C and D synchronous power generating modules	77
15.1.1 Functional requirements of dynamics modelling data	77
15.1.2 Requirements concerning the verification and documentation of the modelling	data .
15.1.2 Specific study requirements	11
15.1.3 Specific study requirements	79 79
Requirements for power park modules	80
16 Active power control and frequency control of power park modules	80
16.1 Active power control and frequency control of a type A power park module	80
16.2 Active power control and frequency control of a type B power park module	80
16.3 Active power control and frequency control of type C and D power park modules	80
16.3.1 Fingrid's rights during disturbance in the power system	80
16.3.2 Active power, start-up, and house load operation of power generating facility	0U 81
16.3.4 Curtailment of active power	82
16.3.5 Restriction of rate of change of active power	
16.3.6 Rapid downward control of active power	83
16.3.7 Changes between the modes of active power control and frequency control	83
16.3.8 Accuracy and sensitivity of control	83
16.3.9 Interrupting the generation of active power due to high wind	84
16.3.10 Restarting of generation after disconnection from the grid	84
17 Reactive power capacity of power park modules	85
17.1 Reactive power capacity of type B power park modules	85
17.2 Boastive power conscituted type C and D power park modules	85

17.2.1 Reactive Power capacity requirement	85
17.2.2 Supplementary reactive power capacity	86
17.2.3 Components utilised to achieve the reactive power capacity requirement	00 88
17.2.5 Restriction of reactive power capacity	87
40 Valtare a stal and static power a start of a survey mark as dates	
18 Voltage control and reactive power control of power park modules	88
18.2 Voltage control and reactive power control of a type C power park module	00 88
18.2 1 Eunctionalities of voltage control and reactive power control	88
18.2.2 Constant voltage control	89
18.2.3 Constant reactive power control	90
18.2.4 Constant power factor control	90
18.2.5 Changes in the modes and reference values of voltage control and reactive po	wer
control	90
18.2.6 Protection and limiters related to the functioning of voltage control	91
18.2.7 Other components contributing to voltage control and reactive power control	91
18.3 Voltage control and reactive power control of a type D power park module	91
19 Commissioning testing of power park modules	92
19.1 Shared requirements for the commissioning testing of all power park modules	92
19.2 Commissioning testing for type B power park modules	92
19.3 Commissioning testing for type C power park modules	93
19.3.1 Commissioning lest plans, measurements and data exchange	93
19.3.2 Substituting the commissioning testing	94
19.3.4 Functions to be verified in commissioning testing	
19.4 Commissioning testing for type D power park modules	100
20 Modelling requirements applicable to power park modules	101
20.1 Modelling requirements applicable to type C and D power park modules	101
20.1.1 General simulation model requirements	101
20.1.2 Aggregation of power generating facility for the simulation model	101
20.1.3 Requirements concerning power flow and fault current simulation	101
20.1.4 Requirements concerning the dynamics simulation of power park modules	101
20.1.5 Requirements concerning the verification and documentation of the modelling	
2016 Specific study requirements	102
20.1.0 Specific study requirements	103
21 Appendix A: Compliance process menitoring tables for type D newer generating	104
facilities	105
21.1 Stage 1 (Planning):	105
21.2 Stage 2 (Commissioning and compliance):	106
21.3 Stage 2: Comprehensive commissioning testing – synchronous power generating	
module	107
21.4 Stage 2: Comprehensive commissioning testing – power park module	108
21.5 Stage 3 (Review and approval):	109
22 Appendix B: Principles of voltage control setpoint configuration for power generation for	ating 110
22.1 Introduction	111

7

22.2 Volt	age control	.112
22.2.1	Method of voltage control	.112
22.2.2	Voltage control setpoint	.112
22.2.3	Main transformer rating	.112
22.2.4	Operation of an on-load tap-changer in a main transformer	.112
22.3 Slop	be and setpoint	.113
22.3.1	Definition	.113
22.3.2	Setpoint	.114
22.4 Intra	a-plant reactive power control	.115
22.5 Exa	mple diagrams of typical setups	.116
22.5.1	Power park module	.116
22.5.2	Synchronous power generating module – one generator	.117
22.5.3	Synchronous power generating module – two or more generators	.118
23 Append	ix C: Tuning instructions for power system stabilisers used in generators	
connected t	o the Finnish power system	.119
connected to 23.1 Intro	o the Finnish power system	.119 .120
connected to 23.1 Intro 23.2 Bac	bothe Finnish power system	.119 .120 .120
connected to 23.1 Intro 23.2 Bac 23.3 Key	b the Finnish power system	.119 .120 .120 .121
connected to 23.1 Intro 23.2 Bac 23.3 Key 23.4 PSS	b the Finnish power system	.119 .120 .120 .121 .121
connected t 23.1 Intro 23.2 Bac 23.3 Key 23.4 PSS 23.5 Pow	b the Finnish power system	.119 .120 .120 .121 .121 .122
connected to 23.1 Intro 23.2 Bac 23.3 Key 23.4 PSS 23.5 Pow 23.5.1	by the Finnish power system	.119 .120 .120 .121 .121 .121 .122 .122
connected to 23.1 Intro 23.2 Bac 23.3 Key 23.4 PSS 23.5 Pow 23.5.1 23.5.2	b the Finnish power system	.119 .120 .120 .121 .121 .122 .122 .122
connected to 23.1 Intro 23.2 Bac 23.3 Key 23.4 PS 23.5 Pow 23.5.1 23.5.2 23.5.2 23.5.3	b the Finnish power system	.119 .120 .120 .121 .121 .121 .122 .122 .122
connected to 23.1 Intro 23.2 Bac 23.3 Key 23.4 PSS 23.5 Pow 23.5.1 23.5.2 23.5.2 23.5.3 23.5.4	by the Finnish power system	.119 .120 .120 .121 .121 .122 .122 .122 .122
connected to 23.1 Intro 23.2 Bac 23.3 Key 23.4 PSS 23.5 Pow 23.5.1 23.5.2 23.5.3 23.5.4 23.5.5	by the Finnish power system	.119 .120 .120 .121 .121 .122 .122 .122 .122
connected to 23.1 Intro 23.2 Bac 23.3 Key 23.4 PSS 23.5 Pow 23.5.1 23.5.2 23.5.3 23.5.4 23.5.5 23.5.6	by the Finnish power system by body of the Finnish power system by by b	.119 .120 .120 .121 .121 .122 .122 .122 .122
connected to 23.1 Intro 23.2 Bac 23.3 Key 23.4 PSS 23.5 Pow 23.5.1 23.5.2 23.5.3 23.5.4 23.5.5 23.5.6 23.5.7	b the Finnish power system	.119 .120 .120 .121 .121 .122 .122 .122 .122
connected to 23.1 Intro 23.2 Bac 23.3 Key 23.4 PSS 23.5 Pow 23.5.1 23.5.2 23.5.3 23.5.4 23.5.5 23.5.6 23.5.7 23.6 Exa	by the Finnish power system	.119 .120 .120 .121 .121 .122 .122 .122 .122

16.11.2018

1 Introduction

This document contains the Grid Code Specifications for Power Generating Facilities (hereinafter referred to as "Specifications") required by Fingrid Oyj (hereinafter referred to as "Fingrid"), by virtue of the system responsibility imposed on Fingrid, of power generating facilities connected to the Finnish power system. In addition to these Specifications, power generating facilities shall fulfil Fingrid's General Connection Terms (YLE) valid at the time of connection, the terms specified in the Main Grid Contract and the connection terms set by the relevant network operator.

The Specifications are based on the European Network Code (EU Commission Regulation 2016/631), to which Fingrid has made national additions and clarifications. The aim of the European network codes is to guarantee equal and non-discriminatory conditions for competition on the internal energy market, to ensure system security and to create harmonised connection terms for grid connections.

On a national level, the purpose of the Grid Code Specifications for Power Generating Facilities is to ensure that:

- the power generating facility withstands the voltage and frequency fluctuations occurring in the power system,
- the power generating facility supports the operation of the power system during disturbance situations, and operates reliably during and after such situations,
- while synchronised to the power system, the power generating facility does not cause any adverse impacts to the other installations connected to the power system, and
 - the relevant network operator and Fingrid obtains the data on the power generating facility, necessary in the planning of the power system and its operation and in the maintaining of system security.

The requirements set out in sections 3-10 concern both synchronous power generating modules and power park modules. The requirements set out in sections 11-15 concern all power generating facilities that have synchronous generators connected directly to the grid. The requirements set out in sections 16-20 concern all power generating facilities whose generated electric power is supplied into the power system partly or completely through a power converter. If other types of power generating facilities are to be connected to the power system, Fingrid will determine their requirements separately.

16.11.2018

2 Terms and definitions

Underexcitation limiter (UEL): A limiter of AVR in a synchronous generator, intended to maintain a sufficient generator excitation current so that synchronous operation is maintained.

Discrete reserve power generating facility: A power generating facility which is designed to operate only during exceptional or disturbance situations of the power system or in island operation.

Generator transformer: A synchronous power generating module's transformer, through which the power generated by the generator is supplied into the power system.

Terminal voltage of generator: See terminal voltage.

Automatic voltage regulator (AVR): An automatic voltage regulator controls the reactive power generated by the power generating facility by using either the terminal voltage of the generator or the voltage of the connection point as a reference point.

K-factor: Defines a power park module's fault current in relation to the remaining voltage during a fault.

 ΔI_q ΔU U_n

where I_q is the reactive current, I_n is the power generating facility's nominal current, U is the remaining voltage during the fault, U_n is the nominal voltage.

Commissioning tests: A power generating facility's commissioning tests related to the Grid Code Specifications for Power Generating Facilities.

Terminal voltage: The terminal voltage is the voltage of the generator busbar.

Power generating facility owner: A party whose power generating facility is connected to the power system.

Connection point: Ownership limit as specified in the connection agreement.

Connection agreement: An agreement between the power generating facility owner and the relevant network operator, specifying the terms and conditions for connecting the power generating facility to the relevant network operator's network.

Reactive power: Imaginary component of the apparent power; unit Mvar.

Reactive power capacity: The highest reactive power measured at a connection point that the power generating facility can continuously generate or consume without a time limit .

16.11.2018

Slope: The relative change of reactive power generated by a power generating facility in relation to the voltage change.

Minimum output (P_{min}): The minimum output of a power generating facility is the smallest possible active power production level of the power generating facility measured at a connection point, at which power the power generating facility can operate continuously without a time limit.

Rated capacity (P_{max}) **:** A power generating facility's rated capacity is its highest active power production level measured at the connection point, at which power the facility can operate continuously without a time limit; the rated capacity has been specified in the connection agreement or otherwise determined by the relevant network operator and the power generating facility owner. The rated capacity may not be limited by means of software to a lower level than the nominal rated capacity of the power generating facility owner's electricity generation installations.

Normal operating voltage: The voltage at the connection point as specified by the relevant network operator (voltage corresponding to 100% value). Expressed as a per unit value, the normal operating voltage is 1.0 pu.

Step-up transformer: A transformer between the busbar and connection point of a power park module, through which transformer the power generated by the power park module is supplied into the power system.

Numerical: Data is indicated digitally as numbers in a computer-readable and modifiable format; for example, a measurement time series in commissioning testing.

Apparent Power: Product of voltage and current at fundamental frequency; unit MVA.

House load: Apparent power consumed by the house load equipment of a power generating facility. House load equipment covers those power generating facility equipment and machines that are needed at the power generating facility to generate electricity or heat and electricity, to maintain the capability for generation, and to eliminate or reduce the adverse environmental impacts of the facility.

Minimum regulating level: The minimum output if the availability of primary energy does not impose restrictions.

pu: per unit value. A variable is compared to a predetermined base value.

Black start capability: The ability of a power generating facility to start electricity generation by means of its own power source, without any external power supply from the electricity network.

PSS: Power system stabiliser. An additional function of an AVR, aiming to improve the damping of low-frequency power oscillations with regard to local facility-level oscillation and inter-area oscillation of the power system.

Active power: Real component of the apparent power; unit MW.

16.11.2018

Reserve power generating facility: A power generating facility which is only used during disturbances in the power system and for restoring the power system to the normal state after disturbances as well as for the management of power balance in the power system in situations where all commercially available resources have been used.

Droop: Relative change of active power generated by a power generating facility in relation to the frequency change.

Power park module: A power park module means a unit or an economic ensemble of units generating electricity, which is either non-synchronously connected to the network or connected through power electronics, and that also has a single connection point to a transmission system, distribution system including closed distribution system, or HVDC system.

Maximum regulating level: The rated capacity if the availability of primary energy or ambient temperature does not impose restrictions.

Control mode: Various modes of control of a power generating facility, such as constant active power control, frequency control, constant reactive power control, or constant voltage control.

Frequency control: A power generating facility controls its active power generation in relation to the frequency of the power system defined by a specified droop. In this way, the power generating facility supports the maintenance of frequency stability in the power system.

Synchronous power generating module: An indivisible set of installations which can generate electrical energy such that the frequency of the generated voltage, the generator speed and the frequency of network voltage are in a constant ratio and thus in synchronism.

Mode: See control mode.

Production power: Active power production generated by a power generating facility at a specific time.

Turbine generator: A combination of turbine and generator that converts the kinetic energy of the medium flowing through the turbine into electrical energy.

Wind turbine generator: A power generating unit which converts the kinetic energy of wind into electrical energy.

Wind power park module: A power generating facility with one or more wind turbine generators.

Specifications: Grid Code Specifications for Power Generating Facilities VJV2018.

Power generating facility: A facility built for power generation, capable of supplying electric power to the connection point. A power generating facility is built around one or more power generating units and includes, depending on the form of power generation, the equipment and systems required for the production of energy, the power generating

UNOFFICIAL TRANSLATION

16.11.2018

facility level control and automation system, the internal electricity network of the power generating facility, the generator, step-up and house load transformers, and other auxiliary equipment of the power generating facility.

YLE: Fingrid's General Connection Terms.

Over-excitation limiter: A limiter of AVR, intended to prevent the overexcitation of the generator and generator transformer by limiting the excitation current.

UNOFFICIAL TRANSLATION

16.11.2018

3 Scope

These Specifications shall apply to those power generating facilities connected or to be connected to the Finnish power system where the rated capacity of the power generating facility is at least 0.8 kW. The Specifications vary according to the power generating facility's method of connection, the power generating facility's rated capacity and the connection point's voltage level.

The Specifications are applied to new power generating facilities to be connected to the power system, but they shall also apply to existing power generating facilities when their technical characteristics are changed. Notification of a change must be given in compliance with the procedure outlined in Section <u>6.2</u>.

It is the responsibility of the power generating facility owner to fulfil and maintain the VJV2018 Specifications if the power generating facility's binding procurement agreement was signed after 19 May 2018. Otherwise, the power generating facility owner must fulfil and maintain the specifications that were in force when the power generating facility's connection agreement was concluded. The Specifications shall be fulfilled at the connection point or at a point defined separately by a specific requirement.

The Specifications are staggered according to type categories based on the power generating facility's rated capacity and the connection point's voltage level. The type categories applied in this document are presented in Table 3.1.

Connection **Term/condition** Power generating facility's rated Туре point's voltage category capacity Pmax level The connection The power generating facility's Type A and point's voltage rated capacity is at least level is 0.8 kW but less than 1 MW. less than 110 $(0.8 \text{ kW} \le P_{\text{max}} < 1 \text{ MW})$ kV¹ The connection Туре В and The power generating facility's point's voltage rated capacity is at least level is 1 MW but less than 10 MW. less than 110 $(1 \text{ MW} \le P_{\text{max}} < 10 \text{ MW})$ kV¹ Type C The connection The power generating facility's and point's voltage rated capacity is at least level is 10 MW but less than 30 MW. $(10 \text{ MW} \le P_{\text{max}} < 30 \text{ MW})$ less than 110 kV Type D The connection The power generating facility's or rated capacity is at least point's voltage + level is 30 MW at least 110 kV $(P_{\text{max}} \ge 30 \text{ MW})$

Table 3.1. The power generating facility's type classification based on rated capacity and the connection point's voltage level.

¹Regardless of the connection point's voltage under the connection agreement, the voltage level of the connection point of type A and B power generating facilities is considered to be the voltage level to which the power generating facility's main transformer is connected or the voltage level to which the power generating facility is connected directly without a main transformer.

16.11.2018

The rated capacity of synchronous power generating modules should be classed according to the size of the installations and include all the components of a power generating facility that normally run indivisibly, such as separate alternators driven by the separate gas and steam turbines of a single combined-cycle gas turbine installation. A facility that includes several such combined-cycle installations should be assessed on the basis of the size of one installation, and not on the facility's aggregated capacity.

The rated capacity of a power park module must be classed on the basis of the power generating facility's aggregated capacity. Such a power generating facility includes one or more power park units, which are collected together to form an economic unit and which have a single connection point.

The Specifications do not apply to discrete reserve power generating facilities if they operate in the system for less than five minutes per calendar month while the system is in normal system state. Parallel operation during maintenance or commissioning testing of reserve power generating facilities and the power system shall not count towards the five-minute limit. Maintenance is considered to be periodic, repeated operating tests that have been scheduled in advance (e.g. a one-hour test run between 8–9 a.m. on the first Monday of every month).

Offshore power generating facilities that are connected to the power system shall meet the requirements for onshore power generating facilities, unless the connection of the power generating facility is via a high voltage direct current connection. In this case, the connection terms shall be determined according to the connection terms for high voltage direct current connections.

In terms of energy storage systems, these Specifications apply solely to pump storage power generating modules; other types of energy storage systems are beyond the scope of the Specifications, for instance battery storage.

With regard to power generating facilities linked to the networks of industrial sites, power generating facility owners, network operators of industrial sites and relevant network operators whose network is connected to the network of an industrial site shall have the right to agree on conditions for disconnection of such power generating facilities together with critical loads, which secure production processes, from the relevant network operator's network. Exercising this right must be co-ordinated with Fingrid.

Power generating facilities for combined heat and power production embedded in the networks of industrial sites must fulfil the requirements related to active power control and frequency control only with regard to Section <u>10.2.3</u>, where all of the following criteria are met:

- the primary purpose of those facilities is to produce heat for production processes of the industrial site concerned;
- heat and power-generating is inextricably interlinked, that is to say any change of heat generation results inadvertently in a change of active power generating and vice versa.

16.11.2018

4 Confidentiality

Confidentiality obligations have been laid down explicitly in European Commission Regulation 2016/631, Article 12, and these obligations are applied nationally to these Specifications:

"Article 12

Confidentiality obligations

1. Any confidential information received, exchanged or transmitted pursuant to this Regulation shall be subject to the conditions of professional secrecy laid down in paragraphs 2, 3 and 4.

2. The obligation of professional secrecy shall apply to any persons, regulatory authorities or entities subject to the provisions of this Regulation.

3. Confidential information received by the persons, regulatory authorities or entities referred to in paragraph 2 in the course of their duties may not be divulged to any other person or authority, without prejudice to cases covered by national law, the other provisions of this Regulation or other relevant Union law.

4. Without prejudice to cases covered by national or Union law, regulatory authorities, entities or persons who receive confidential information pursuant to this Regulation may use it only for the purpose of carrying out their duties under this Regulation."

UNOFFICIAL TRANSLATION

16.11.2018

14 (129)

5 Specific study requirements

The power generating facility owner shall request from Fingrid the assessment of a need for a specific study during the preliminary planning stage of the power generating facility if the power generating facility belongs to type category D (table <u>3.1</u>). Fingrid assesses the need for a specific study with regard to at least the following issues: subsynchronous interaction, geomagnetically induced currents, power oscillation damping and low short circuit ratio.

If the technical execution of a power generating facility connection requires specific studies, the power generating facility owner shall conduct the studies in co-operation with Fingrid and the relevant network operator no later than during the planning stage of the power generating facility grid connection. The power generating facility owner is responsible for executing and co-ordinating the specific studies.

If the specific studies indicate that the connection of the power generating facility requires specific measures in order to ensure the technical feasibility of the power generating facility, the measures are treated as equivalent to the Specifications, and the power generating facility owner is responsible for their execution.

UNOFFICIAL TRANSLATION

16.11.2018

6

Compliance monitoring process of the Specifications, continuous monitoring, and related responsibilities

This section defines the compliance monitoring process of the Specifications for all synchronous power generating modules and power park modules as well as continuous monitoring of the power generating facilities' compliance and operational notification procedure. Moreover, this section defines the responsibilities, obligations and rights of the power generating facility owner, relevant network operator and Fingrid during the compliance monitoring process and continuous monitoring. The details of the responsibilities, obligations and rights for specific requirements are recorded in sections <u>7–20</u> of this document.

The power generating facility owner must take into account that the Specifications compliance process described in this document does not include the power generating facility's connection process in its entirety. The compliance process is described solely in terms of verifying the system's technical capabilities. The power generating facility owner must always agree on the connection with the relevant network operator before the connection is planned. The power generating facility owner and the relevant network operator conclude a connection agreement that specifies the detailed connection terms. A connection cannot be made without the relevant network operator's permission.

6.1 Responsibilities, obligations and rights during the compliance monitoring process and during continuous monitoring

6.1.1 Responsibilities, obligations and rights of the power generating facility owner and the relevant network operator

The power generating facility owner is responsible for the compliance monitoring process and fulfilment of the Specifications as well as for the associated costs. The power generating facility owner is responsible for fulfilling and maintaining operations according to the Specifications throughout the power generating facility's lifetime.

The power generating facility owner shall notify the relevant network operator of the planned test schedules and procedures to be followed for verifying the power generating facility's compliance with the Specifications, in due time and prior to their launch. The relevant network operator shall specify the date of the notification. The relevant network operator shall approve in advance the planned test schedules and procedures. Such approval by the relevant network operator must be given in a timely manner and shall not be unreasonably withheld. The relevant network operator may participate in such tests and record the performance of the power generating facility.

The relevant network operator has the right specify additional requirements if they are needed because of an electricity network located close to the power generating facility. Potential conflicts between the Specifications and the additional requirements specified by the relevant network operator shall be resolved between Fingrid and the relevant network operator.

The relevant network operator shall supervise the compliance monitoring process of the Specifications during the power generating facility project, and take care of the data exchange required by the process with the power generating facility owner and Fingrid.

16.11.2018

The relevant network operator shall verify the data supplied by the power generating facility owner and assess whether the power generating facility is in compliance with the Specifications, and shall notify the power generating facility owner of the outcome of the assessment.

The relevant network operator shall have the right to request that the power generating facility owner carry out compliance tests and simulations according to a repeat plan or general scheme or after any failure, modification or replacement of any equipment which may have an impact on the power generating facility's compliance with the Specifications.

The relevant network operator shall make publicly available a list of information and documents to be provided as well as the requirements to be fulfilled by the power generating facility owner within the framework of the compliance process.

The relevant network operator shall make public the allocation of responsibilities between the power generating facility owner and the network operator for compliance testing, simulation and monitoring.

The relevant network operator may totally or partially delegate the performance of its compliance monitoring to third parties. In such cases, the relevant network operator shall continue ensuring compliance with the confidentiality obligations (Chapter <u>4</u>), including entering into confidentiality commitments with the assignee.

If compliance tests or simulations cannot be carried out as agreed between the relevant network operator and the power generating facility owner due to reasons attributable to the relevant network operator, then the relevant network operator shall not unreasonably withhold the operational notification according to the compliance monitoring process (Section 6.4).

The power generating facility owner shall maintain the operation of the power generating facility in accordance with the Specifications also after the accepted execution of the compliance monitoring process of the Specifications. If the power generating facility owner discovers that the operation of the power generating facility is in conflict with the Specifications, the power generating facility owner shall inform the relevant network operator and Fingrid of this without delay, and take the necessary measures to eliminate the conflict.

The relevant network operator shall inform the power generating facility owner and Fingrid without delay if the relevant network operator discovers at any stage of the power generating facility project or during the normal operation of the power generating facility that the power generating facility derogates from the Specifications.

6.1.2 Fingrid's responsibilities, obligations and rights

The responsibilities, obligations and rights of the relevant network operator apply to Fingrid when the power generating facility is connected to Fingrid's grid.

If Fingrid receives information or discovers that the power generating facility derogates from the Specifications at any stage of the power generating facility project or during the normal operation of the power generating facility, Fingrid may require additional

UNOFFICIAL TRANSLATION

16.11.2018

clarifications and measures to correct the derogation. If the shortcomings in the operation of the power generating facility related to the Specifications influence the operation of the power system, Fingrid, as the transmission system operator, has the right to restrict the operation of the power generating facility and to impose conditions related to the operation of the power generating facility. Fingrid has the right to keep the restrictions imposed in force until the shortcomings detected in the operation of the power generating facility have been corrected and the capability of the power generating facility to fulfil the Specifications has been verified.

Fingrid's representative has the right to participate in commissioning testing when the power generating facility is connected to the electricity network of a third party.

6.2 Amendment of power generating facility technical characteristics

If changes are made to a type C or D power generating facility which is in operation or to the equipment or systems influencing its technical characteristics, the power generating facility owner shall, before making the changes, inform the relevant network operator of the changes and of their impact on the capability of the power generating facility to fulfil the Specifications.

It is the relevant network operator's responsibility to evaluate and set new requirements for the equipment and systems being changed, in accordance with the Grid code Specifications for Power Generating Facilities valid at the time.

The relevant network operator must update the existing connection agreement to include information about the equipment to be changed and the Specifications to be applied. If the relevant network operator considers the scope of the change (modernisation or replacement of equipment) to be such that it requires a new connection agreement, the network operator must agree on the terms of a new connection agreement with the power generating facility owner.

If the relevant network operator and the power generating facility owner cannot agree on the connection terms, the matter must be taken to the Finnish Energy Authority. The Energy Authority must decide whether the connection agreement that is in effect should be amended or a new one should be drawn up, as well as the extent to which the Specifications must be complied with.

6.3 Power generating facility projects progressing in stages

The power generating facility owner shall take into account the trend in the generation capacity of the power generating facility during the various stages of the project, and the final rated capacity of the power generating facility. With power generating facility projects progressing in stages, the Specifications are determined on the basis of the final rated capacity of the power generating facility.

It is the power generating facility owner's responsibility to verify that the power generating facility fulfils the Specifications if at least one of the following conditions are met:

 the rated capacity of the power generating facility or the connection point's voltage level exceeds the type limit related to the Specifications, shown in table <u>3.1</u>,

UNOFFICIAL TRANSLATION

16.11.2018

- 2) the structure or functionalities of the power generating facility change in a way which affects the technical characteristics and functionalities of the power generating facility.
- 6.4 Compliance monitoring process of Specifications and operational notification procedure for power generating facilities
- 6.4.1 Compliance monitoring process and operational notification procedure for a type A power generating facility

The operational notification procedure for the connection of each new type A power generating facility must include submitting an installation document. The power generating facility owner shall ensure that the required information is filled in on the installation document obtained from the relevant network operator and is submitted to the network operator.

Separate installation documents shall be provided for each power generating facility. The power generating facility owner may rely upon equipment certificates, issued as per Regulation (EC) No 765/2008, for compliance monitoring.

The relevant network operator shall ensure that the required information can be submitted by third parties on behalf of the power generating facility owner.

The relevant network operator shall specify the contents of the installation document, which shall have at least the following information:

a) the location at which the physical connection is made;

- b) the date of the connection;
- c) the rated capacity of the installation in kW;
- d) the type of primary energy source;

e) the classification of the power generating facility as an emerging technology according to confirmation given by the Finnish Energy Authority;

f) reference to equipment certificates issued by an authorised certifier used for equipment that is in the site installation;

g) as regards equipment for which an equipment certificate has not been received, information shall be provided as directed by the relevant network operator; and

h) the contact details and signatures of the power generating facility owner and the installer.

The power generating facility owner shall ensure that the relevant network operator and Finnish Energy Authority are notified about the permanent decommissioning of a power generating facility. The relevant network operator shall ensure that such notification can be made by third parties, including aggregators.

UNOFFICIAL TRANSLATION

16.11.2018

6.4.2 Compliance monitoring process and operational notification procedure for a type B and C power generating facilities

In the operational notification procedure concerning the connection of type B and C power generating facilities, the use of equipment certificates issued by an authorised certifier is permitted.

For the purpose of the operational notification procedure for the connection of each new type B power generating facility, a power generating facility document (Table 7.1), which shall include a statement of compliance, shall be provided by the power generating facility owner to the relevant network operator.

For the purpose of the operational notification procedure for the connection of each new type C power generating facility, power generating facility documents (tables 7.2 and 7.3), which shall include a statement of compliance, shall be provided by the power generating facility owner to the relevant network operator.

In the statement of compliance, the power generating facility owner shall indicate each delivered document or file name in the reference column in the table in Chapter $\frac{7}{2}$ and confirm with a signature that the power generating facility fulfils the set Specifications.

A separate independent power generating facility document from a power generating facility shall be provided for each power generating facility.

The power generating facility owner shall perform commissioning tests to verify that the power generating facility operates in compliance with the Specifications and shall provide the relevant network operator with data conforming to the Specifications after the commissioning tests.

Once the power generating facility owner has carried out the measures required by the compliance monitoring of the Specifications, the relevant network operator shall review the data delivered by the power generating facility owner and give a statement of the compliance monitoring of the Specifications. The relevant network operator, on acceptance of a complete and adequate power generating facility document, shall issue a final operational notification to the power generating facility owner.

After the giving of a final operational notification, the relevant network operator shall deliver the data conforming to the Specifications to Fingrid. If the relevant network operator refuses to issue a final operational notification, the reasons for such refusal and measures required to rectify the matter must be presented to the power generating facility owner.

The documentation and delivery of power generating facility data is specified in Chapter $\underline{7}$. The real-time measurements and instrumentation are specified in Chapter $\underline{9}$. The compliance monitoring of the Specifications by means of commissioning tests is specified in chapters $\underline{14}$ and $\underline{19}$. Modelling requirements and compliance monitoring are specified in chapters $\underline{15}$ and $\underline{20}$.

UNOFFICIAL TRANSLATION

16.11.2018

The measures related to the compliance monitoring of the Specifications shall be successfully completed no later than 12 months from the date on which the power generating facility supplied active power to the power system for the first time.

The power generating facility owner shall ensure that the relevant network operator and Finnish Energy Authority are notified about the permanent decommissioning of a power generating facility.

6.4.3 Compliance monitoring process and operational notification procedure for a type D power generating facility

The power generating facility owner and the relevant network operator must carry out a compliance monitoring process and operational notification procedure for a type D power generating facility in stages according to Table <u>6.1</u>. The procedure presented in Table <u>6.1</u> is described in detail in stages in the sub-sections of this section.

Once the power generating facility owner has carried out the measures conforming to the Specifications in each stage in the required scope, the relevant network operator shall verify the data supplied and confirm the execution of the required measures in each stage, as well as deliver the energisation operational notification (EON) or operational notification required after each stage to the power generating facility owner. The relevant network operator shall supervise the compliance monitoring process of the Specifications, including the commissioning tests, during the power generating facility project, and take care of the data exchange required by the process with the power generating facility owner and Fingrid. The relevant network operator shall deliver the data conforming to the Specifications to Fingrid after the confirmation of each stage of the process.

The documentation and delivery of power generating facility data is specified in Chapter <u>7</u>. The real-time measurements and instrumentation are specified in Chapter <u>9</u>. The compliance monitoring of the Specifications by means of commissioning tests is specified in chapters <u>14</u> and <u>19</u>. Modelling requirements and compliance monitoring are specified in chapters <u>15</u> and <u>20</u>. The tables for the follow-up and documentation of the process stages are presented in Appendix <u>A</u>.

The power generating facility owner shall ensure that the relevant network operator and Finnish Energy Authority are notified about the permanent decommissioning of a power generating facility.

UNOFFICIAL TRANSLATION

16.11.2018

Table 6.1. Compliance monitoring process of the Specifications, operational notification procedure and schedule requirements for type D power generating facilities.

Pi	rocess stage	Condition	Schedule requirement and additional information
Er	nergisation operational otification (EON)	The physical grid connection is ready for commissioning.	The connection must be implemented according to the terms of the connection agreement. Upon receiving the EON, the power generating facility owner shall have the right to energise the network beyond the connection point.
St • • p • •	tage 1 (Planning): Planning data Modelling data Required calculations Project-specific reliminary setpoints Delivery of real-time measurement data Statement of ompliance	The power generating facility owner can deliver the Stage 1 data as soon as they are available.	The Stage 1 data and real-time measurement must be delivered as early as possible so that the power generating facility's interim operational notification can be processed. The data to be delivered is listed in Section <u>7.4</u> .
Int	terim operational otification (ION)	The power generating facility owner has delivered the Stage 1 data and carried out a real-time measurement. The relevant network operator has confirmed the implementation of the required measures.	Upon receiving an interim operational notification (ION), the power generating facility owner shall have the right to operate the power generating facility and generate power to the connection point for not more than 18 months.
St cc tc im c m c r pr c c	tage 2 (Commissioning and ompliance): Changes and updates o stage 1 data Planning and nplementation of ommissioning testing Reporting of test results Validation of nodelling data Final setpoints of ontrol devices and rotection Statement of ompliance	The relevant network operator has given an interim operational notification (ION)	The power generating facility owner must deliver the commissioning testing plan to the relevant network operator no later than 2 months before the planned start of the tests. The commissioning tests shall be performed in an approved manner within 9 months and the Stage 2 measures within 12 months from the date on which the power generating facility supplied active power to the power system for the first time. The data to be delivered is listed in Section <u>7.4</u> .
St ap d	tage 3 (Review and oproval): Review of delivered ata Approval of the process	The power generating facility owner has delivered the Stage 2 data and carried out the measures, and the relevant network operator has confirmed that the required measures have been implemented.	The relevant network operator must review the delivered data and confirm that the required measures have been carried out. The relevant network operator must deliver a statement on compliance with the Specifications no later than three months after receiving the Stage 2 data.
Fil (F	nal operational notification ON)	The relevant network operator has confirmed the implementation of the Stage 3 measures.	Upon receiving the FON, the power generating facility owner shall have the right to operate the power generating facility and generate power to the connection point until further notice.

UNOFFICIAL TRANSLATION

16.11.2018

6.4.3.1 Construction of a physical connection, and the energisation operational notification (EON)

A physical grid connection is implemented according to the connection agreement concluded between the power generating facility owner and the relevant network operator. When the connection is ready to be commissioned, the relevant network operator shall review compliance with the terms of the connection agreement and give the power generating facility owner an EON.

The EON gives the power generating facility owner the right to energise the network and the auxiliaries of the power generating facility beyond the connection it controls.

6.4.3.2 Stage 1 (Planning) and interim operational notification (ION)

In Stage 1, the power generating facility owner shall deliver to the relevant network operator the data listed in Section $\frac{7.4}{2}$ and carry out real-time measurement in accordance with the instructions in Chapter <u>9</u>.

The power generating facility owner shall deliver a statement of compliance as part of the delivery of the Stage 1 data. In the statement of compliance, the power generating facility owner shall indicate each delivered document or file name in the reference column in Table <u>7.2</u> and confirm with a signature that the power generating facility fulfils the set Specifications.

The Stage 1 data and real-time measurement must be delivered as early as possible so that the power generating facility's interim operational notification can be processed. Once the power generating facility owner has delivered the Stage 1 data and carried out a real-time measurement, the relevant network operator shall review the delivered data, confirm the execution of the required measures and deliver an interim operational notification (ION) to the power generating facility owner.

The ION is valid for a period of 18 months, during which time the power generating facility owner shall have the right to operate its power generating facility and generate power to the connection point.

The period of validity of the ION may be extended on justified grounds for no more than 6 months. An extension of the period of validity must be requested from the relevant network operator and Fingrid, which may by a unanimous decision, extend the period of validity of the ION. If there is a still a further need to derogate from this, a request for such derogation must be requested in accordance with the procedure laid down in Chapter $\underline{8}$.

6.4.3.3 Stage 2 (Commissioning and compliance):

In Stage 2, the power generating facility owner carries out the planning and implementation of the power generating facility's commissioning tests and delivers the data listed in Section <u>7.4</u> to the relevant network operator. In addition, any possible changes and updates to the Stage 1 data shall be delivered to the relevant network operator during Stage 2.

16.11.2018

The power generating facility owner shall deliver a statement of compliance as part of the delivery of the Stage 2 data. In the statement of compliance, the power generating facility owner shall indicate each delivered document or file name in the reference column in Table <u>7.3</u> and confirm with a signature that the power generating facility fulfils the set Specifications.

The condition for the Stage 2 measures is an interim operational notification (ION). All Stage 2 measures must be completed while the ION is valid.

With respect to the planning of commissioning tests, the power generating facility owner must deliver the commissioning testing plan to the relevant network operator no later than 2 months before the planned start of the tests. The commissioning tests shall be performed in an approved manner within 9 months and the Stage 2 measures within 12 months from the date on which the power generating facility supplied active power to the power system for the first time.

6.4.3.4 Stage 3 (Review and approval) and final operational notification (FON)

In Stage 3, the relevant network operator reviews all data delivered during the process and confirms that the required measures have been carried out. The relevant network operator must deliver a statement on compliance with the Specifications no later than three months after receiving the Stage 2 data. If there are no comments to be made on the data delivered during the process, the relevant network operator must issue a final operational notification (FON).

The FON is valid until further notice and it entitles the power generating facility owner to use the power generating facility and to produce power to the connection point.

6.4.3.5 Limited operational notification (LON)

A limited operational notification procedure enters into effect when significant and unforeseen modifications take place at the power generating facility and affect its ability to fulfil the Specifications. A power generating facility owner to whom a FON has been granted shall inform the relevant network operator immediately in the following circumstances:

- the power generating facility is temporarily subject to either significant modification or loss of capability affecting its performance; or
- an equipment failure leading to non-compliance with some relevant Specifications is observed.

The power generating facility owner shall apply for a limited operational notification (LON) from the relevant network operator if the power generating facility owner reasonably expects the above-mentioned circumstances to persist for more than three months.

A LON shall be issued by the relevant network operator and shall contain the following information which shall be clearly identifiable:

• the unresolved issues justifying the granting of the LON;

16.11.2018

- the responsibilities and timescales for the expected solution; and
- a maximum period of validity which shall not exceed 12 months. The initial period granted may be shorter with the possibility of an extension if evidence is submitted to the satisfaction of the relevant network operator demonstrating that substantial progress has been made towards achieving full compliance.

The FON shall be suspended during the period of validity of the LON with regard to the items for which the LON has been issued.

A further extension of the period of validity of the LON may be granted upon a request for a derogation made to the relevant network operator before the expiry of that period, in accordance with the derogation procedure described in Chapter $\underline{8}$.

The relevant network operator shall have the right to refuse to allow the operation of the power generating facility once the LON is no longer valid. In such cases, the FON shall automatically become invalid.

If the relevant network operator does not grant an extension of the period of validity of the LON when a request for derogation has been made or if it refuses to allow the operation of the power generating facility once the LON is no longer valid, the power generating facility owner may refer the issue for decision to the Finnish Energy Authority within six months after the notification of the decision of the relevant network operator.

UNOFFICIAL TRANSLATION

16.11.2018

7 Documentation and delivery of power generating facility data

7.1 Data to be delivered for a type A power generating facility

The relevant network operator specifies the data to be delivered for a type A power generating facility, in accordance with the instructions in Section 6.4.1.

7.2 Data to be delivered for a type B power generating facility

The data specified in Table 7.1 shall be delivered on type B power generating facilities. Moreover, the data specified in Table 7.4 shall be delivered on synchronous power generating modules. The power generating facility owner shall submit this power generating facility data to the relevant network operator as electronic documents after the commissioning testing. The data to be submitted shall be clear and unambiguous in terms of its layout and structure. The relevant network operator shall deliver the data to Fingrid.

The power generating facility owner shall deliver a statement of compliance as part of the data to be delivered. In the statement of compliance, the power generating facility owner shall indicate each delivered document or file name in the reference column in Table 7.1 and confirm with a signature that the power generating facility fulfils the set Specifications.

UNOFFICIAL TRANSLATION

16.11.2018

Table 7.1. Data to be delivered for a type B power generating facility.

	General data	Refere
	1.1 Single line diagram	
	1.2 Structure	
	Type of power generating facility (e.g. wind power, solar power, biomass, gasification)	
	Basic data (e.g. on wind power park module: tower height, rotor diameter, converter powered etc.)	
	1.3 Location data (municipality, area, connection point, coordinates)	
2	Technical details of transformers:	
	2.1 Number, supplier and type details of the power generating facility's transformers	
	2.2 Documentation and data sheets of transformers	ļ
	Power [MVA], current [A], transformation ratio [primary, secondary], short-circuit impedance [%], short-circuit	
	resistance [%], vector group and earthing details, control range and step of on- or off-load tap-changer [%, %],	
	number of steps of on- of on-load tap-changer and selected step [quantity, step]	
3	Technical details of power generating facility:	
	3.1 Number, supplier and type details of power-generating units	
	3.4 Documentation and data sheets of power-generating units	L
	Apparent power [MVA], rated capacity [MW], maximum output [MW], minimum output [MW], current [A], voltage [[
	Electric parameters of synchronous machines (resistances, reactances, and related time constants) see Table	7.4
	3.5 Dependence of production power on operating conditions (e.g. wind velocity, temperature)	
	3.6 Potentially used compensation devices and/or devices used for the correction of power factor	
	Number, type, rated values of devices (power, current, voltage, frequency)	
	If used for the filtering of harmonics, data on the structure and tuning frequency	
4	Power generating facility operational characteristics:	
	he following items may be replaced, for example, by the manufacturer's device documents, testing documentation according to the	
I	EC 61400-21 standard or other testing documentation	
	4.1 Data on the power generating facility's reactive power capacity and PQ diagrams of generators	
	4.2 Data on the power generating facility's ability to operate at undervoltage and overvoltage	1
	4.3 Data on the power generating facility's ability to operate at underfrequency and overfrequency	
	4.4 Data on the power generating facility's ability to operate during voltage disturbances	
	4.5 Data on the power generating facility's fault current injection during a voltage disturbance	
	4.6 Data on the power generating facility's active power control characteristics	
	4.7 Data on the power generating facility's voltage control characteristics	
5	Protection details of the power generating facility:	
	5.1 Relay protection diagram of the power generating facility	
	5.2 Final relay protection setpoints of the power generating facility	
	5.3 Data on the operating principle of island protection	
6 (Commissioning documents:	
	6.1 Commissioning records	
	6.2 Final setpoint values and mode of voltage control	
;	Statement of compliance	
	The power generating facility owner's representative confirms with a signature that the documents referred to in this	
t	able's reference details prove that the power generating facility meets the Specifications set for it.	

16.11.2018

7.3 Data to be delivered for a type C power generating facility

For type C power generating facilities, the data specified in tables <u>7.2</u> and <u>7.3</u> must be delivered. Moreover, the data specified in Table <u>7.4</u> shall be delivered on synchronous power generating modules. The power generating facility owner shall submit this power generating facility data to the relevant network operator as electronic documents after the commissioning testing. The data to be submitted shall be clear and unambiguous in terms of its layout and structure. The relevant network operator shall deliver the data to Fingrid.

The power generating facility owner shall deliver a statement of compliance as part of the data to be delivered. In the statement of compliance, the power generating facility owner shall indicate each delivered document or file name in the reference column in tables <u>7.2</u> and <u>7.3</u> and confirm with a signature that the power generating facility fulfils the set Specifications.

- 7.4 Data to be delivered for a type D power generating facility
- 7.4.1 Delivery and schedule of power generating facility data

The power generating facility owner shall deliver power generating facility data on type D power generating facilities to the relevant network operator in accordance with the compliance monitoring process of the Specifications for the power generating facility, specified in Section 6.4.3:

- 1) The data specified in Table <u>7.2</u> shall be delivered in Stage 1 of the compliance monitoring process. Moreover, the data specified in Table <u>7.4</u> shall be delivered on synchronous power generating modules.
- 2) The data specified in Table <u>7.3</u> shall be delivered in Stage 2 of the compliance monitoring process.

The power generating facility owner shall submit this power generating facility data to the relevant network operator as electronic documents after the compliance monitoring process of the power generating facility. The data to be submitted shall be clear and unambiguous in terms of its layout and structure. The relevant network operator shall deliver the data to Fingrid.

The power generating facility owner shall deliver a statement of compliance as part of the data to be delivered. In the statement of compliance, the power generating facility owner shall indicate each delivered document or file name in the reference column in tables $\frac{7.2}{7.3}$ and $\frac{7.3}{7.3}$ and confirm with a signature that the power generating facility fulfils the set Specifications.

7.4.2 Data to be delivered

The data to be delivered on type D power generating facilities is specified in tables $\frac{7.2}{7.3}$ and $\frac{7.3}{7.3}$. Table $\frac{7.4}{7.4}$ specifies the additional data to be delivered on synchronous power generating modules. With some of the data to be delivered, the tables make reference to

16.11.2018

the sections of this document where the topic and the data to be delivered have been elaborated.

UNOFFICIAL TRANSLATION

16.11.2018

Table 7.2. Data to be delivered for type C and D power generating facilities. The data in the table for type D power generating facilities must be delivered in Stage 1 of the compliance monitoring process.

	Stage 1 (Planning)	Reference
1	General data	
1.1	Name and contact details of project, connection point, relevant network operator and contact details	
1.	2 Single line diagram	
	The main components of the power generating facility and the electricity network that connects the components	
	Electric parameters of the components and conductors presented in the single line diagram	
1.:	3 Type data	
	Power generating facility's production type and fuel (e.g. wind power, hydropower, condensing power [coal])	
	Basic data (e.g. on wind power park module: tower height, rotor diameter, converter powered etc.)	
1.4		
2	Technical data	
2.*	Number, supplier and type details of power-generating units	
2.2	2 Documentation and data sheets of power-generating units	
	Production units' apparent power [MVA], rated capacity [MW], minimum output [MW], current [A], voltage [V],	
	frequency [Hz]	
	Data specified in Table 7.4 on synchronous power generating modules	
	Water time constant of hydroelectric power plants (Tw)	+
2.	Documentation and data sheets of transformers	
	Power [MVA], current [A], transformation ratio [primary, secondary], short-circuit impedance [%], short-circuit resistance [%] voctor group and earthing details, control range and stop of on, or off lead tap, chapter [%, %]	
	number of steps of on- or off-load tap-changer and selected step (or off- of off-load tap-changer [%, %),	
2	Documentation and data sheets of other components	
	Where applicable, the same data as on power generating units (section 2.2) and transformers (section 2.3) as	
	well as all data that is relevant in terms of the Specifications (e.g. structure, filter tuning frequency)	
3	Operating voltage and frequency range	
3.1	Data on the power generating facility's ability to operate at undervoltage and overvoltage (section 10.2.1 or 10.5.1)	
3.2	Data on the power generating facility's ability to operate at underfrequency and overfrequency (section 10.2.1 or 10.5.1)	
3.3	3.3 Data on the power generating facility's rate of change of frequency withstand capability (section 10.2.2)	
4	Fault-ride-through capability	
4.1	Calculation of the operation of the power generating facility during voltage disturbance (section 10.3.2 or 10.5.3)	1
4.3	2 Data on fault current injection of a power park module (section 10.3.3)	
4.	Data on active power recovery after a voltage disturbance (section 10.3.4)	
5	Active power control and frequency control	
5.	Documentation and description of active power control and frequency control (chapter 11 or 16)	
	Documentation on the control system's implementation and technical characteristics.	
	Functional block diagram on the implementation of control described as transfer curves.	
5.2	Parameters and operating delays set for controllers	
6	House load and changes in production power	
6	Data on the operation of the power generating facility in house load operation (section 11.3.5)	
	House load of the power generating facility, operating time in house load operation, potential delays in transition	+
	to house load operation and synchronisation with the grid, and restrictions in transition to house load operation	
6.2	2 Changes in production power	1
	Changes in production power in conjunction with frequency and voltage fluctuations	1
	Dependence of production power on operating conditions (e.g. temperature, wind velocity)	+
	Operating conditions leading to the shutdown of production power (e.g. limit value of maximum wind velocity)	1
	Rate of change of production power, functionality and constraints of limiters of rate of change	

UNOFFICIAL TRANSLATION

16.11.2018

Table 7.2 continues.

7	Reactive power capacity of the power generating facility	
7.1	Reactive power capacity calculation (section 12.2.4 or 17.2.4)	
7.2	PQ diagrams	1
	PQ diagrams of power generating units or generators and data on their voltage-frequency dependence. The	
	setpoints used in the reactive power limiters shall be specified in the PQ diagrams.	<u> </u>
7.3	Other components influencing reactive power	<u> </u>
	Components that generate (e.g. capacitor or STATCOM) and consume reactive power, and their operation as a	
	function of the variables (e.g. voltage, active power) influencing the components	ļ
8	Voltage control and reactive power control	
8.1	Documentation and description of voltage control and reactive power control (chapter 13 or 18)	
	Documentation on the control system's implementation and technical characteristics.	1
	Functional block diagram on the implementation of control described as transfer curves.	1
	(e.g. according to IEEE 421.5).	
8.2	Parameters and operating delays set for controllers	ļ
8.3	Voltage control performance calculation (section 13.2.3 or 18.2.2.1)	ļ
9	Protection setpoints of the power generating facility and impact on power quality	
9.1	Protection setpoints (section 10.3.5)	
	Data on the relay protection diagram of the generators and at the facility level as well as on the setpoints of the	l
	described protection. Related data shall be submitted on protection which leads to the disconnection of the	ļ
	generator/facility from the grid and on protection whose activation leads to a restriction or automatic change in	
	the generator's/power generating facility's active power, reactive power or voltage.	ļ
9.2	The power generating facility's impact on power quality (section 10.4.4).	
	Description of the change in power quality caused by the connection of the power generating facility to the grid,	
	and potential reports of factory testing (e.g. according to IEC 61400-21).	
10	Data required for dynamic modelling	
	Project-specific data or simulation models required by the modelling of dynamic operation in accordance with the	1
	Specifications	
11	Real-time measurement data and instrumentation	
11.1	Method of delivery and verification of real-time measurement data (section 9.3)	
11.2	Technical data on and the setpoints of disturbance and swing recorders	
12	Specific study requirements	
	Required specific studies related to the Specifications (chapter 5)	
13	Power generating facility project's schedule and commissioning	
	Schedule of the power generating facility project and the planned timing of the commissioning tests relating to the	·
	Specifications. Possible options for expanding the project and known future expansion plans shall also be reported.	
	The power generating facility owner's representative confirms with a signature that the documents referred to in this table's	
	Place date signature and printed name:	
	riaco, dato, signature and printed name.	
		1

.....,

UNOFFICIAL TRANSLATION

16.11.2018

Table 7.3. Data to be delivered for type C and D power generating facilities. The data in the table for type D power generating facilities must be delivered in Stage 2 of the compliance monitoring process.

		Stage 2 (Commissioning and compliance)	Reference
	1	Changes and further specifications	
		Further specifications to the data delivered in stage 1 of the compliance verification process	
2	2	Data related to commissioning tests	
2	.1	Commissioning test plan (section 14.3.1 or 19.3.1)	
		The detailed commissioning testing plan, commissioning instructions provided by the power generating facility	
		supplier and a description of the practical arrangements of the tests for verifying compliance with the	
		Specifications shall be submitted to the relevant network operator at the latest two months before the tests	
	`	Commission action (4.2.4 m/40.2.4)	
2	.2	Commissioning schedule (section 14.3.1 or 19.3.1)	
		relevant network operator and Fingrid.	
2	.3	Measurement arrangements (section 14.3.1 or 19.3.1)	
		Plan of the execution of measurements for the tests related to the Specifications. Data on both fixed measuring	
		equipment and measuring equipment only used during the commissioning tests.	
;	3	Results of commissioning tests	
3	.1	Commissioning report on tests related to the Specifications (section 14.3.3 or 19.3.3)	
3	.2	Key results of commissioning tests in numerical format (Table 15.2 or 20.2)	
4	4	Verified modelling data	
		Validated data required for the modelling of dynamic operation, or simulation models (chapter 15 or 20)	
:	5	Final controller setpoint values	
		Final setpoint values of the controllers of active power and frequency as well as of the controllers of voltage and reactive	
		power of the power generating facility/generators.	
(6	Final protection setpoint values	
		Final protection setpoint values of the power generating facility/generators and the power generating facility connection.	
		Statement of compliance	
		The power generating facility owner's representative confirms with a signature that the documents referred to in this table's reference details prove that the power generating facility meets the Specifications set for it. Place, date, signature and printed name:	

UNOFFICIAL TRANSLATION

16.11.2018

Table 7.4. Data to be delivered on the generators of synchronous power generating modules.

1	Rated values			
1.1	Rated voltage Ur	[kV]		
1.2	Voltage range	[pu]		
1.3	Apparent power Sr	[MVA]		
1.4	Rated capacity Pmax	[MW]		
1.5	Rated current Ir	[A]		
1.6	Rated power factor <i>cos q</i> _r			
1.7	Rated speed of rotation n	[1/min]		
1.8	Rated excitation voltage Ue	1		
1.9	Rated excitation current <i>I</i> f	[A]		
2	Impedances			
2.1	Stator resistance R	[pu]		
2.2	Direct-axis synchronous reactance Xd	[pu]		
2.3	Direct-axis synchronous reactance Xd (saturated)	[pu]		
2.4	Quadrature-axis synchronous reactance Xq	pu]		
2.5	Direct-axis transient reactance Xd	[pu]		
2.6	Direct-axis transient reactance Xd' (saturated)	[pu]		
2.7	Quadrature-axis transient reactance X _q '	[pu]		
2.8	Direct-axis subtransient reactance X ^d "	[pu]		
2.9	Quadrature-axis subtransient reactance X _q "	[pu]		
2.10	Stator stray reactance X	[pu]		
2.11	Zero phase-sequence reactance X_0	[pu]		
2.12	Negative phase-sequence reactance X ₂	[pu]		
3	Time constants			
3.1	DC short-circuit time constant Ta	[s]		
3.2	Direct-axis transient open circuit time constant $T_{do'}$	[s]		
3.3	Quadrature-axis transient open circuit time constant T_{qo}	[s]		
3.4	Direct-axis subtransient open circuit time constant Tdo"	[s]		
3.5	Quadrature-axis subtransient open circuit time constant T_{qo} "	[s]		
3.6	Direct-axis transient short-circuit time constant Td'	[s]		
3.7	Quadrature-axis transient short-circuit time constant T_q	[s]		
3.8	Direct-axis subtransient short-circuit time constant Td"	[s]		
3.9	$Quadrature-axis subtransient short-circuit time constant T_q"$	[S]		
4	Mechanical parameters			
4.1	Inertia constant (turbine, generator and other rotating components) H	[s]		
4.2	Moment of inertia of generator J_g	[kgm²]		
4.3	Moment of inertia of each turbine Jt1, Jt2, Jt3,	[kgm²]		
4.4	Moment of inertia of exciter (if available) Jexc	[kgm²]		
4.5	Spring constants between the above-mentioned turbine generator parts K_{t1_t2} , K_{t2_t3} ,, K_{tx_g} , K_{g_exc}	[Nm/Rad]		

16.11.2018

8 Derogations

The derogation procedure has been laid down explicitly in European Commission Regulation 2016/631, Article 60. The described procedure is applied on a national level to these Specifications.

Pursuant to Regulation 2016/631, Article 62 (5), Fingrid must assess any derogations concerning a type C and D power generating facility. Fingrid shall assess the request for a derogation based on the following criteria:

- 1) the derogation does not compromise the system security of the power system;
- 2) the derogation does not restrict the transmission capacity of the power system;
- 3) the power generating facility does not cause disturbance to the other parties connected to the power system;
- 4) the power generating facility supports the operation of the power system during disturbance situations, and operates reliably during and after such situations;
- 5) the derogation is technically and commercially justified; and
- 6) the derogation may be granted in the future in a similar situation impartially and without discriminating against any future power generating facility projects.

UNOFFICIAL TRANSLATION

16.11.2018

9 Real-time measurements, data exchange and instrumentation

9.1 Real-time measurements and data exchange for type A power generating facilities

Real-time measurements are not required for type A power generating facilities. The relevant network operator determines the notification procedure before the power generating facility is connected.

9.2 Real-time measurements and data exchange for type B power generating facilities

The power generating facility owner shall deliver to the relevant network operator the real-time active power and reactive power measurement data, as well as status information on the switchgear.

The relevant network operator shall deliver or oblige the power generating facility owner to deliver to Fingrid the real-time measurement data on the power generating facilities connected to the electricity network of the relevant network operator.

The update cycle of the real-time data may be no more than 60 s. The measurement data shall be available to Fingrid before the power generating facility begins to supply active power to the power system.

The measurement data shall primarily be delivered as a net measurement.¹ Upon separate agreement, the data can be delivered as a producer-specific sum if specific power generating facility data cannot be delivered. In this case, wind and solar power production shall be delivered separately from other production.

Before the power generating facility begins to supply active power to the power system, the power generating facility owner shall inform the relevant network operator of this.

Real-time measurements and data exchange for type C and D power generating facilities

The power generating facility owner shall deliver to the relevant network operator the real-time active power and reactive power measurement data, as well as status information on the switchgear. The measurement data shall primarily be delivered as a net measurement.¹ In addition, the power generating facility owner must deliver voltage measurement data on the voltage according to which the power generating facility controls the voltage when operating on constant voltage control.

The relevant network operator shall deliver or oblige the power generating facility owner to deliver to Fingrid the real-time measurement data on the power generating facilities connected to the electricity network of the relevant network operator.

The update cycle of the real-time data may be no more than 60 s. The measurement data shall be available to Fingrid before the power generating facility begins to supply active power to the power system.

¹ A power plant's net production refers to the figure that is achieved when a power generating facility's house load is deducted from its gross production.

9.3

UNOFFICIAL TRANSLATION

16.11.2018

Before the power generating facility begins to supply active power to the power system, the power generating facility owner shall inform both the relevant network operator and Fingrid's Main Grid Control Centre of this.

9.4 Instrumentation for type C and D power generating facilities

Disturbance and swing recorders must be installed in type C and D power generating facilities. This recording system consisting of disturbance and swing recorders allows the recording of the power generating facility functionality and its controllers during disturbance and change situations in the power system. The recording system can also be implemented with disturbance recorders integrated in relays. A separate swing recorder is not necessary if the disturbance recorder's recording time covers the requirements set for the swing recorder.

The recording system shall meet the following requirements:

- 1. The disturbance recorder must measure and record the voltages at the connection point and the generator's currents as momentary values in stages. The disturbance recorder must be triggered when:
 - the protective relay operates
 - the voltage is lower than 0.95 or higher than 1.05 pu
- 2. The swing recorder must measure and record the voltages at the connection point and the generator's currents as RMS values in stages, as well as record the phase angle of the voltages and currents. If the phase angles are not recorded, the generator's active and reactive power must be recorded. The frequency must also be recorded. The swing recorder must be triggered when:
 - the protective relay operates
 - the voltage is lower than 0.95 or higher than 1.05 pu
 - the frequency is lower than 49.80 Hz or higher than 50.20 Hz
- 3. In addition to the variables cited in items 1 and 2 above, recording the controlling devices' operating points and the SCADA system logs is recommended
- 4. The sampling and recording frequency of the disturbance recorder shall be high (1 kHz or greater). The recording period shall be a few seconds.
- 5. The sampling frequency of the swing recorder shall be high (1 kHz) and the recording frequency can be low (50 Hz or higher). The recording period shall be a few dozen seconds.
- 6. Both recorders must record a sample before the trigger point. When the recorder is triggered at 0 s the recorders must record a set pre-fault time and post-fault time. These pre- and post-fault times are as follows:
 - for the disturbance recorder: (pre) 0.5...1 s / (post) 2...n s

- for the swing recorder: (pre) 1...5 s / (post) 15...n s
- 7. The recording systems shall be implemented in such a way that Fingrid has access to the system records no later than within 24 hours from Fingrid's request to the power generating facility owner.
UNOFFICIAL TRANSLATION

16.11.2018

10 General requirements

10.1 Power system voltages and frequencies

The normal operating voltage (voltage corresponding to the 100% value) at the connection point is case dependent, and the power generating facility owner must always find out what the voltage is from the relevant network operator. The relevant network operator determines the voltage fluctuation range in its electricity network in normal, disturbance and exceptional situations. In a normal situation, the voltage fluctuation range must be at least 0.90–1.05 pu of the normal operating voltage.

The nominal voltage levels in Finland's main grid are 110 kV, 220 kV and 400 kV. The normal operating voltages of the main grid's connection point on which the design of the connection are based are, correspondingly, 118 kV, 233 kV and 410 kV.

In Fingrid's grid, the voltage fluctuation ranges in normal, disturbance and exceptional situations are as follows: The normal fluctuation range of voltage in a grid with a nominal voltage of 400 kV is 395–420 kV, and in exceptional and disturbance situations the voltage range is 360–420 kV. The normal fluctuation range of voltage in a grid with a nominal voltage of 220 kV is 215–245 kV, and in exceptional and disturbance situations the voltage range is 210–245 kV. The normal fluctuation range of voltage in a grid with a nominal voltage of 110 kV is 105–123 kV, and in exceptional and disturbance situations the voltage range is 100–123 kV.

The Nordic Power System's nominal frequency is 50 Hz and the frequency is normally 49.9–50.1 Hz. The frequency of the grid during normal use may vary between 49.0–51.0 Hz and exceptionally even between 47.5–51.5 Hz.

- 10.2 General requirements for a type A power generating facility
- 10.2.1 Operating voltage and frequency range of the power generating facility

The power generating facility shall be able to operate continuously and normally in the voltage range defined by the relevant network operator.

The power generating facility shall be able to operate continuously and normally when the electricity system's frequency is 49.0–51.0 Hz. The power generating facility must be able to operate for a period of 30 minutes when the electricity system's frequency is 51.0–51.5 or 49.0–47.5.

10.2.2 Rate of change of frequency withstand capability

The power generating facility shall be capable of continuing to operate normally when the rate of change of frequency is less than 2.0 Hz/s.

The measurement of the rate of change of frequency shall not react to the sudden changes in the waveform of voltage caused by disturbances in the system.

Protection systems that identify the rate of change of frequency may only be used if the power generating facility's rated capacity is under 50 kW. The protection system may

16.11.2018

disconnect the power generating facility from the network if the rate of change of frequency exceeding the protection limit has been measured for at least 500 milliseconds. The risk of this kind of protection system malfunctioning is high, and unexpected disconnection may occur in the normal operating voltage and frequency range.

Protection based on frequency and voltage measurement is recommended to prevent island operation in radial grids.

10.2.3 Limited frequency sensitive mode – overfrequency (LFSM-O)

The power generating facility must be capable of reducing its active power production as a linear function of frequency when the electricity system's frequency exceeds 50.5 Hz (see Figure 10.1), if the availability of primary energy does not impose restrictions.

It shall be possible to adjust the droop of LFSM-O between 2 and 12 per cent. The recommended setpoint is 4%.

A frequency response shall be activated with an initial delay that is as short as possible, within two seconds at the most, when the electricity system's frequency exceeds 50.5 Hz.

When a power generating facility achieves the lowest possible regulating level, it must be able to continue its operations at that level. The minimum regulating level is the minimum power output if the availability of primary energy does not impose restrictions.

The power generating facility shall be capable of operating stably during LFSM-O operation, and when LFSM-O is active, its setpoint will prevail over any other active power setpoints.

Limited frequency sensitive mode - overfrequency status must always be enabled.

Figure 10.1. In LFSM-O operation, the power generating facility must be capable of reducing its active power production as a linear function of frequency when the electricity system's frequency exceeds 50.5 Hz. It shall be possible to adjust the droop to between 2 and 12 per cent. In the figure, f is the frequency, f_n is the nominal frequency (50 Hz), P is the power generating facility's active power, P_{max} is the power generating facility's rated capacity.

16.11.2018

10.2.4 Active power control

The power generating facility must be capable of maintaining active power according to the target value, regardless of changes in the frequency, except when any frequency control mode is active. If the facility's primary energy production decreases rapidly (e.g. when wind velocity decreases), there is no need to maintain active power with a separate energy reserve.

10.2.5 Admissible reduction in active power production

When the electricity system's frequency falls below 49 Hz, the power generating facility is allowed to reduce its active power generation linearly by 10% per 1 Hz frequency drop.

The reduction in active power is assumed to take place in environmental conditions where the power generating facility is capable of reaching its rated capacity.

10.2.6 Remote control capability

The power generating facility shall be equipped with a logic interface (input port) in order to cease active power output within five seconds following an instruction being received at the input port.

10.2.7 Automatic connection

The power generating facility may automatically connect to the electricity system if the following conditions are met:

- the electricity system's frequency is 49.0–51.0 Hz
- the connection point's voltage is in the normal range
 - the maximum allowed rate of change of the power generating facility's active power is 100% of the rated capacity in one minute
- the relevant network operator permits the installation of an automatic reconnection system and automatic connection 1–10 minutes after the disturbance
- 10.3 General requirements for a type B power generating facility

The same general requirements (Section <u>10.2</u>) apply to type B power generating facilities as those that apply to type A power generating facilities, with the exception of remote control capability (Section <u>10.2.6</u>). A type B power generating facility must also fulfil the requirements set out in this section.

10.3.1 Remote control capability

The power generating facility must be equipped with a bus interface (input port), so that a setpoint can be given to the production of active power in order to reduce the active power according to the setpoint. The bus interface must be compatible with the IEC60870-6 (Elcom, ICCP/TASE.2), IEC 60870-5-104 or IEC 61850 protocols.

UNOFFICIAL TRANSLATION

16.11.2018

10.3.2 Fault-ride-through capability

The power generating facility shall be able to continue operation during and after disturbances in the power system:

- A synchronous power generating module, with its house load operation, shall be designed in such a way that it can withstand a momentary voltage fluctuation as shown in Figure <u>10.2</u>, occurring at the connection point, without being disconnected from the grid and without losing its synchronous operation. Momentary pole slipping of a synchronous power generating module is not allowed.
- A power park module, with its house load operation, shall be designed in such a way that it can withstand a momentary voltage fluctuation as shown in Figure 10.3, occurring at the connection point, without being disconnected from the grid.

After a disturbance, the power generating facility shall be able to operate without being disconnected from the grid during momentary variations in voltage amplitude and phase angle caused by potential local or inter-area electromechanical oscillations following a voltage disturbance.

The fault-ride-through requirement is applicable to symmetrical faults (3-phase short circuits) and asymmetrical faults (2-phase short circuits and earth short circuits, 1-phase earth short circuits).

The fault-ride-through requirement has been specified for the following conditions:

Before the voltage disturbance, the voltage of the connection point of the power generating facility is 1.0 pu.

Before the voltage disturbance, the power generating facility does not supply reactive power to the connection point or take reactive power from the connection point.

- Before the voltage disturbance, the automatic voltage regulator (AVR) of the power generating facility is in operation.
- The short circuit current of the connection point is assumed to be at normal summertime level before and after the local fault.

UNOFFICIAL TRANSLATION

16.11.2018

Figure 10.2. The voltage of a connection point corresponding to a momentary voltage disturbance, during and after which type B and C synchronous power generating modules shall continue to operate normally. The per unit value 1.0 pu of voltage is the voltage before the disturbance. The voltage is 0.05 pu for 150 milliseconds.

Figure 10.3. The voltage of a connection point corresponding to a momentary voltage disturbance, during and after which type B and C power park modules shall continue to operate normally. The per unit value 1.0 pu of voltage is the voltage before the disturbance. The voltage is 0.05 pu for 150 milliseconds.

The power generating facility may not automatically disconnect as a result of several consecutive voltage disturbances. Disconnection in such cases is only allowed when the

UNOFFICIAL TRANSLATION

16.11.2018

transient angle stability of the power generating facility is jeopardised or the duration of braking energy exceeds the rated value.

10.3.3 Fault current injection of a power park module

The power park module shall be capable of activating the supply of fast fault current either by:

- ensuring the supply of the fast fault current at the connection point, or
- measuring voltage deviations at the terminals of the individual units of the power generating facility and providing a fast fault current at the terminals of these units.

A full-converter-(FC)-equipped power generating facility's fault current injection during the fault must be set according to the following requirements:

- The fault current injection shall prioritise the reactive current (Iq).
- The fault current injection's k-factor must be 2.5, and in asymmetrical faults, the positive and negative sequence component must be supplied in the ratio defined by the k-factor.
- The fault current's injection mode shall rise to the target value within 30–50 ms and settle to the target value (tolerance +20%...-10%) within 60–80 ms.
- The fault current's injection mode shall be activated when the phase voltage of terminals of the connection point or individual units of the power generating facility is less than 0.85 pu.
- The fault current's injection mode shall be disabled when the phase voltage returns to a level higher than 0.90 pu.

A double-fed, induction-generator-(DFIG)-equipped power generating facility's fault current injection during the fault must be set according to the following requirements:

- The fault current injection shall prioritise the reactive current (Iq).
- The fault current injection's k-factor must be between 2–6, and in asymmetrical faults, the negative sequence component naturally provided by the machine must be supplied, pursuant to standard EN 50549-1.
- The fault current's injection mode shall rise to the target value within 30–50 ms and settle to the target value (tolerance +20%...-10%) within 60–80 ms.
- The fault current's injection mode shall be activated when the phase voltage of terminals of the connection point or individual units of the power generating facility is less than 0.85 pu.
- The fault current's injection mode shall be disabled when the phase voltage returns to a level higher than 0.90 pu.

UNOFFICIAL TRANSLATION

16.11.2018

10.3.4 Recovery of active power after a voltage disturbance

After a momentary voltage disturbance (see Section <u>10.3.2</u> or <u>10.5.2</u>) the power generating facility shall restore the active power which preceded the disturbance within 1–3 seconds of the start of the disturbance. Active power is considered restored when the active power measured at the connection point is at the pre-fault level (tolerance ±5% of the setpoint. No permanent power changes are accepted as a result of a voltage disturbance.

If the restoration of active power depends on the level of voltage at the connection point, said dependence and a description of its potential impact on power restoration shall be delivered to Fingrid and to the relevant network operator.

10.3.5 Protection

The relevant network operator shall specify the schemes and systems necessary for protecting the network, taking into account the characteristics of the power generating facility. The protection schemes needed for the power generating facility and the network as well as the settings relevant to the power generating facility shall be coordinated and agreed between the relevant network operator and the power generating facility owner.

The power generating facility owner is responsible for specifying the protection settings of the power generating facility and power generating facility connection in order to guarantee personal and equipment safety and to prevent equipment damage. The protection settings shall be set in such a way that the power generating facility remains connected to the grid during disturbances in the power system for as long as this is possible within the scope of the technology and operational safety of the power generating facility.

The power generating facility owner is responsible for ensuring that the planning of the protection of the power generating facility takes into account the intense short-term changes in the voltages, currents and frequency of the power system caused by disturbances and faults, and the high-speed automatic reconnection and delayed automatic reconnection commonly used in restoring the operation of transmission lines. The settings shall be based on the capability of the equipment to withstand severe fluctuations in system frequency and in the voltage at the connection point. The protection of the power generating facility must not conflict with the Specifications.

Electrical protection of the power generating facility shall take precedence over operational controls, taking into account the system security and the health and safety of staff and of the public, as well as mitigating any damage to the power generating facility. The power generating facility owner shall organise its protection and control devices in accordance with the following priority ranking (from highest to lowest):

- 1. the protection of the electricity network and the power generating facility,
- 2. synthetic inertia (if required),
- 3. active power control and frequency control,

16.11.2018

- 4. power restriction,
- 5. power gradient constraint

UNOFFICIAL TRANSLATION

16.11.2018

10.4 General requirements for a type C power generating facility

The same general requirements as for type A and B power generating facilities (sections 10.2 and 10.3) are applicable to type C power generating facilities, with the exception of remote control capability (sections 10.2.6 and 10.3.1). A type C power generating facility must also fulfil the requirements set out in this section.

10.4.1 Control and remote use of the power generating facility

The power generating facility must be equipped with a bus interface (input port), so that a setpoint can be given to the production of active power in order to reduce the active power according to the setpoint. The interface must be compatible with the IEC60870-6 (Elcom, ICCP/TASE.2), IEC 60870-5-104 or IEC 61850 protocols.

The operator responsible for the operation of the power generating facility can control it remotely or locally. The operator responsible for the operation of the power generating facility shall change the mode or setpoint of the power generating facility's active power control or reactive power control within the limits set by power generating facility technology if Fingrid's Main Grid Control Centre or the relevant network operator so requests. The requested change must be achieved 15 minutes after the request is made (tolerance $\pm 5\%$ of the setpoint or at most ± 1 MW).

The power generating facility owner shall inform Fingrid and the relevant network operator of the contact information of the operator responsible for the operation of the power generating facility, no later than when the power generating facility begins to supply active power to Finland's power system. The power generating facility owner is responsible for ensuring that the responsible operator is available 24 hours a day, 7 days a week.

10.4.2 Limited frequency sensitive mode – underfrequency (LFSM-U)

The power generating facility must be capable of increasing its active power production as a linear function of frequency when the electricity system's frequency is below 49.5 Hz (see Figure <u>10.4</u>).

It shall be possible to adjust the droop of LFSM-U between 2 and 12 per cent.

A frequency response shall be activated with an initial delay that is as short as possible, within two seconds at the most, when the electricity system's frequency is below 49.5 Hz.

When a power generating facility achieves the highest possible regulating level, it must be able to continue its operations at that level. The maximum regulating level is the rated capacity if the availability of primary energy or ambient temperature does not impose restrictions.

The power generating facility shall be capable of operating stably during LFSM-U operation, and when LFSM-U is active, its setpoint will prevail over any other active power setpoints.

Limited frequency sensitive mode – underfrequency status must always be on.

16.11.2018

Figure 10.4. In LFSM-U operation, the power generating facility must be capable of increasing its active power production as a linear function of frequency when the electricity system's frequency is below 49.5 Hz. It shall be possible to adjust the droop to between 2 and 12 per cent. In the figure, f is the frequency, f_n is the nominal frequency (50 Hz), P is the power generating facility's active power, P_{max} is the power generating facility's rated capacity.

10.4.3 Requirements relating to stability

With regard to voltage stability, the power generating facility may be capable of automatic disconnection when voltage at the connection point exceeds, in continuous state, normal levels specified by the relevant network operator (see Section <u>10.1</u>) The relevant network operator may also specify voltage levels outside the normal levels at which the power generating facility must disconnect.

In the event of power oscillations, the power generating facility shall retain steady-state stability when operating at any operating point of the P-Q-capability diagram.

Without prejudice to the admissible active power reduction when frequency falls below 49.0 Hz, the power generating facility shall be capable of remaining connected to the network and operating without power reduction, as long as voltage and frequency remain within the limits defined in these Specifications (see Section <u>10.2.5</u>).

The power generating facility shall be capable of remaining connected to the network during single-phase or three-phase auto-reclosures on meshed network lines, if the connection point of the power generating facility is not part of a network section that is disconnected.

With regard to loss of angular stability or loss of control, the power generating facility shall be capable of disconnecting automatically from the network in order to help preserve system security or to prevent damage to the power generating facility. Angular stability has been lost when the electrical angular difference between the active power of the power generating facility and the active power of its connection point exceeds 90 degrees in steady state.

46 (129)

16.11.2018

10.4.4 Power quality

With regard to the power quality, the design of the power generating facility shall take into account the factors and emission limits affecting the power quality described in the report "Power quality in Fingrid's 110 kV grid". The report is available on Fingrid's website.

The power generating facility owner is obliged to follow the power quality requirements imposed by the relevant network operator. The power generating facility owner shall deliver the information and reports (e.g. IEC 61400-21) requested by the relevant network operator, on the basis of which information and reports the relevant network operator can evaluate the impacts of the power generating facility on the power quality before the power generating facility is connected to the grid.

The power generating facility owner shall be prepared for the power quality specified by the relevant network operator.

10.4.5 Earthing of the neutral point of the main transformer

Earthing arrangement of the neutral point at the high-voltage side of the main transformer of the power generating facility owner shall comply with the specifications of the relevant network operator.

10.4.6 Black start capability and island operation

Black start and island operation arrangements are agreed upon separately as necessary in accordance with European Commission Regulation 2016/631, Article 15(5).

10.5 General requirements for a type D power generating facility

The same general requirements as for type A, B and C power generating facilities (sections <u>10.2</u>, <u>10.3</u> and <u>10.4</u>) are applicable to type D power generating facilities, with the exception of remote control capability (sections <u>10.2.6</u> and <u>10.3.1</u>), automatic connection (Section <u>10.2.7</u>) and fault-ride-through (Section <u>10.3.2</u>). A type D power generating facility must also fulfil the requirements set out in this section.

10.5.

Operating voltage and frequency range of the power generating facility

The power generating facility shall be able to operate continuously and normally when the voltage at the connection point is 90-105% of the normal operating voltage and the frequency is 49.0-51.0 Hz. If the voltage, frequency or both at the connection point differ from these values, the power generating facility shall remain connected to the network for at least the periods of time specified in Figure <u>10.5</u>. When the frequency falls below 49.0 Hz, the power generating facility is allowed to reduce its active power generation linearly by 10% per 1 Hz frequency drop.

UNOFFICIAL TRANSLATION

Figure 10.5. The power generating facility must remain connected to the network at the different frequencies and voltages at the connection point set out in the figure. The 100% voltage of the continuous operating range in the 400 kV grid is always 400 kV. At other voltages, the voltage corresponding to the 100% value shall be inquired from the relevant network operator.

10.5.2 Fault-ride-through capability

The power generating facility shall be able to continue operation during and after disturbances in the power system:

- A synchronous power generating module, with its house load operation, shall be designed in such a way that it can withstand a momentary voltage fluctuation, occurring at the connection point, without being disconnected from the grid and without losing its synchronous operation. Momentary pole slipping of a synchronous power generating module is not allowed. The requirements are specified according to the voltage level of the connection point:
 - A type D synchronous power generating module, the nominal voltage of which at the connection point is below 400 kV, must withstand voltage fluctuation as shown in Figure <u>10.6</u>, occurring at the connection point.
 - A type D synchronous power generating module, the nominal voltage of which at the connection point is at least 400 kV, must withstand voltage fluctuation as shown in Figure <u>10.7</u>, occurring at the connection point.

16.11.2018

• A power park module, with its house load operation, shall be designed in such a way that it can withstand a momentary voltage fluctuation as shown in Figure 10.8, occurring at the connection point, without being disconnected from the grid.

After a disturbance, the power generating facility shall be able to operate without being disconnected from the grid during momentary variations in voltage amplitude and phase angle caused by potential local or inter-area electromechanical oscillations following a voltage disturbance.

The fault-ride-through requirement is applicable to symmetrical faults (3-phase short circuits) and asymmetrical faults (2-phase short circuits and earth short circuits, 1-phase earth short circuits).

The fault-ride-through requirement has been specified for the following conditions:

- Before the voltage disturbance, the voltage of the connection point of the power generating facility is 1.0 pu.
- Before the voltage disturbance, the power generating facility does not supply reactive power to the connection point or take reactive power from the connection point.
 - Before the voltage disturbance, the automatic voltage regulator (AVR) of the power generating facility is in operation.
- The short circuit current of the connection point is assumed to be at normal summertime level before and after the local fault.

UNOFFICIAL TRANSLATION

16.11.2018

Figure 10.6. The voltage of a connection point corresponding to a momentary voltage disturbance, during and after which type D synchronous power generating modules with a nominal voltage under 400 kV at the connection point shall continue to operate normally. The per unit value 1.0 pu of voltage is the voltage before the disturbance. The voltage is 0.00 pu for 150 milliseconds.

Figure 10.7. The voltage of a connection point corresponding to a momentary voltage disturbance, during and after which type D synchronous power generating modules with a nominal voltage of at least 400 kV at the connection point shall continue to operate normally. The per unit value 1.0 pu of voltage is the voltage before the disturbance. The voltage is 0.00 pu for 200 milliseconds.

50 (129)

UNOFFICIAL TRANSLATION

16.11.2018

Figure 10.8. The voltage of a connection point corresponding to a momentary voltage disturbance, during and after which type D power park modules shall continue to operate normally. The per unit value 1.0 pu of voltage is the voltage before the disturbance. The voltage is 0.00 pu for 200 milliseconds.

The power generating facility may not automatically disconnect as a result of several consecutive voltage disturbances. Disconnection in such cases is only allowed when the transient angle stability of the power generating facility is jeopardised or the duration of braking energy exceeds the rated value.

10.5.3

Calculation of the operation of the power generating facility during voltage disturbance

A calculation of the fault-ride-through capability of the power generating facility shall be delivered to the relevant network operator in stage 1 of the compliance monitoring process of the specifications of the power generating facility. The calculation does not need to describe the entire power generation process, but the restrictions set by the power generation process on electricity generation shall be taken into account in the calculation. The calculation shall describe the dynamic operation of the power generating facility during voltage disturbances, the calculation criteria are shown in the tables according to connection point nominal voltage:

- connection point nominal voltage less than 400 kV (table <u>10.1</u>)
- connection point nominal voltage at least 400 kV (table <u>10.2</u>)

The voltage disturbance calculation shall be performed with the following assumptions:

• Before the voltage disturbance, the voltage of the connection point of the power generating facility is 1.0 pu.

16.11.2018

- Before the voltage disturbance, the power generating facility does not supply reactive power to the connection point or take reactive power from the connection point.
- Before the voltage disturbance, the automatic voltage regulator (AVR) of the power generating facility is in operation.
- When viewed from the power generating facility, an equivalent circuit is made of the power system beyond the connection point. The equivalent circuit contains impedance describing the short circuit power of the power system and ideal voltage source connected in series. If the connection point of the power generating facility is at the 400 kV voltage level or electrically close to a 400 kV transmission grid, the modelling of the power system shall be agreed upon with Fingrid.
- The short circuit current of the connection point is assumed to be at normal summertime level before the disturbance. The relevant network operator shall notify the short circuit powers to be used in the calculation and presented in Table <u>10.1</u> or <u>10.2</u> to the power generating facility owner.

A description of the model used in the calculation, including the parameters used in the calculation and the block diagram presentations of the control systems, shall be delivered as part of the calculation to the relevant network operator.

 Table 10.1. Input data used in the voltage disturbance calculation, when connection point voltage is less than 400 kV.

Input data	Fault 1	Fault 2
Fault time	150 ms	250 ms
Connection point's voltage during the fault	0.0 pu	0.25 pu
Connection point's short circuit current before the	Normal	Normal
Connection point's short circuit current after the fa	Minimum	Normal

Table 10.2. Input data used in the voltage disturbance calculation, when connection point voltage is at least 400 kV.

Input data	Fault 1	Fault 2
Fault time	200 ms	250 ms
Connection point's voltage during the fault	0.0 pu	0.25 pu
Connection point's short circuit current before the	Normal	Normal
Connection point's short circuit current after the fa	Minimum	Normal

52 (129)

UNOFFICIAL TRANSLATION

16.11.2018

10.5.4 Requirements relating to synchronisation

Requirements relating to synchronisation of a power generating facility are as follows:

- The power generating facility shall be equipped with the necessary synchronisation devices.
- The power generating facility owner may synchronise the power generating facility with the grid only after the relevant network operator has given permission to do so.
- Synchronisation of the power generating facility with the grid shall be possible at the normal continuous operation frequencies and voltages set out in Section <u>10.5.1</u>.
- The power generating facility owner shall agree on the setting of the synchronisation conditions of a synchronous power generating module with the relevant network operator, if the conditions deviate from what is set out below:
 - Frequency 49.0–51.0 Hz
 - Voltage 0.90–1.05 pu.
 - Phase angle difference < 10°
 - Frequency deviation < 0.2 Hz
 - Voltage deviation < 0.05 pu
 - Phase sequence shall be the same on both sides of the circuit breaker to be synchronised

16.11.2018

Requirements applicable to synchronous power generating modules

11 Active power control and frequency control of synchronous power generating modules

11.1 Active power control and frequency control of type A synchronous power generating modules

Type A synchronous power generating modules shall have the functionalities required by active power control and frequency control and for maintaining power output as described in Section <u>10.2</u>. If the power generating facility characteristics include other functionalities related to active power control and frequency control, Fingrid has the right, if necessary, to utilise these functionalities as described in Section <u>11.3.1</u>.

11.2 Active power control and frequency control of type B synchronous power generating modules

Type B synchronous power generating modules shall have the functionalities required by active power control and frequency control and for maintaining power output as described in Section <u>10.3</u>. If the power generating facility characteristics include other functionalities related to active power control and frequency control, Fingrid has the right, if necessary, to utilise these functionalities as described in Section <u>11.3.1</u>.

11.3 Active power control and frequency control of type C and D synchronous power generating modules

In addition to what is set out in this section, type C synchronous power generating modules shall have the functionalities required by active power control and frequency control and for maintaining power output as described in Section <u>10.4</u>.

In addition to what is set out in this section, type D synchronous power generating modules shall have the functionalities required by active power control and frequency control and for maintaining power output as described in Section 10.5.

11.3.1 Fingrid's rights during disturbance in the power system

Fingrid has the right to demand power generating facilities to adjust themselves within the power control features presented in this document, if the power system cannot be restored to the normal state after a disturbance.

- 11.3.2 Active power and start-up time of a power generating facility
- 11.3.2.1 Minimum Output

The minimum output of the power generating facility shall be as small as possible. The following minimum outputs shall be used as the design basis for the power generating facility:

• hydropower, gas turbine and motor power plants: 10% of rated capacity,

16.11.2018

• combined heat and power plants and other power generating facility: 40% of rated capacity.

The minimum output of the power generating facility and its capability to operate momentarily below its minimum output limit shall be reported as part of the data to be delivered.

If the power generating facility consists of several generators and the minimum output is not evenly distributed between the generators, the minimum outputs of individual generators shall also be reported alongside the minimum outputs of the entire power generating facility.

11.3.2.2 Rated capacity and short-term overloadability

The short-term overload capacity and the dependence of the rated capacity and the short-term overloadability of the power generating facility on external factors, such as the temperature of outdoor air or sea water, shall be reported as part of the data to be delivered.

11.3.2.3 Start-up time

Hydropower, gas turbine and motor power plants shall have the ability to start-up and achieve rated capacity output in 15 minutes. Estimates of typical starting times to minimum output power and rated power shall be reported as part of the data to be delivered.

With combined heat and power plants and other power generating facilities, there are no requirements concerning the start-up time, except for the requirements presented in Section <u>11.3.5</u> concerning the restoration from house load operation. An estimate of start-up times in the various ready-to-start states of the power generating facility shall be reported as part of the data to be delivered.

11.3.3 Implementation of active power control and frequency control

11.3.3.1 General controller requirements

The power generating facilities shall be equipped with a turbine controller and associated rotation speed control, with which the active power output and the rate of change of active power can be adjusted.

The active power control of the power generating facility shall allow the setting of the active power output manually and the adjustment of the power output on the basis of frequency measurement (frequency control) using the turbine controller and potential power plant controller.

Frequency control shall be implemented in such a way that the power generating facility can automatically contribute to supporting the frequency of the power system in disturbance situations. Transition to disturbance power control state is executed by a frequency relay or other frequency-sensing equipment. The frequency measurement of

UNOFFICIAL TRANSLATION

16.11.2018

frequency control shall be carried out in such a way that frequency control follows the frequency of the power system.

If functions or actuators, which filter and average the frequency measurement or functions or actuators which otherwise slow down the measurement or alter its nature, are used in conjunction with the frequency measurement, a description of their impact on the accuracy and delay of the frequency measurement shall be provided as part of the data to be delivered.

The active power control system of the power generating facility shall be executed in such a way that the inherent deadband of the control is as small as possible.

11.3.3.2 Functionalities of frequency control

It shall be possible to set a deadband and linear droop for frequency control. The control shall be implemented so that the control has at least two modes of operation: normal state and disturbance state.

If other modes of operation have been specified for active power control and frequency control alongside the normal state and disturbance state, Fingrid shall be informed of them and their setting principles.

11.3.3.3 Control parameters to be set

The setpoint of frequency control shall correspond to the power system's nominal frequency of 50 Hz.

It shall be possible to set the droop of frequency control between 2 and 12 per cent in steps of a maximum of 1 percentage point.

It shall be possible to set the deadband of frequency control between 0.0 and 0.5 Hz in steps of a maximum of 0.01 Hz.

It shall be possible to set the setting limits of the criteria which define the automatic transition in the modes of operation (normal state, disturbance state) based on the frequency measurement in at least the following limits:

- frequency limits leading to a transition in the modes of operation: ±2 Hz in steps of a maximum of 0.1 Hz,
- delay, after which the transition in the modes of operation takes place: 0–60 s in steps of a maximum of 1 second,
- delay, after which a restoration from the transition in the modes of operation takes place: 0–600 s in steps of a maximum of 1 second.

A separate agreement with Fingrid shall be reached if the automatic transition in the modes of operation of the control is carried out in a manner other than based on the frequency deviation.

UNOFFICIAL TRANSLATION

16.11.2018

11.3.3.4 Accuracy and sensitivity of control

The accuracy of the active power control shall be at least 1 MW.

The sensitivity of frequency control shall be at least 10 mHz, and the response time shall be no more than 2 s.

The accuracy and sensitivity of the active power generating facility's power and frequency control shall be verified as part of commissioning testing. A description of these and of the factors affecting them shall be delivered as part of the power generating facility documentation.

11.3.3.5 Transitions between modes of operation

It shall be possible to change, prevent and allow the modes of operation and setpoints of the active power control and frequency control of the power generating facility. The control of the modes of operation and setpoints shall work in the same way regardless of whether the power generating facility is controlled locally or remotely.

A description of the functionalities which carry out the automatic transitions in the modes of operation of the power control and frequency control of the power generating facility shall be delivered as part of the power generating facility documentation.

11.3.4 Rate of change and adjustment range of active power

11.3.4.1 Rate of change and adjustment range of active power in normal state

The requirements for the rate of change of active power have been specified as the highest rate of change of power that shall be achieved in response to a change in the setpoint of the active power of the generator or the power generating facility.

In a normal operation situation, the rate of change of the power of hydro, gas turbine and motor power plants shall be at least $\pm 40\%$ of the rated capacity per minute. It shall be possible to carry out the rate of change of power when the power of the facility is 40–100% of the rated capacity. The rate of change of power can be limited to the maximum permitted rate of change of power restricted by the characteristics of the power generating facility in question when the power of the facility is below 40% of the rated capacity.

The rate of change of the power of combined heat and power plants as well as power generating facilities other than hydro, gas turbine or motor power plants shall be at least $\pm 5\%$ of the rated capacity per minute. It shall be possible to carry out the rate of change of power when the power of the facility is 60–90% of the rated capacity. In this case, the change of power to take place at a time shall be no more than 20% of the rated capacity. The rate of change of power can be limited to the maximum permitted rate of change of power restricted by the characteristics of the power generating facility in question when the power of the facility is below 60% or above 90% of the rated capacity.

16.11.2018

11.3.4.2 Rate of change and adjustment range of active power in disturbance state

The requirements for the rate of change of active power in disturbance state have been specified as response times to a minimum step-like change of 0.5 Hz taking place in the frequency measurement. At least half of the required total change shall be achieved within 5 seconds of the disturbance, and the total change shall be achieved within 30 seconds of the disturbance.

The power change of hydropower, gas turbine and motor power plants shall be at least $\pm 10\%$ of the rated capacity in disturbance situations. It shall be possible to carry out the power change when the power output of the plant is 50–100% of the rated capacity. The power change can be limited to the maximum permitted power change conforming to the characteristics of the power generating facility when the power output of the facility is below 50%, but in this case the determining factors that limit the power change shall be reported as part of the data to be delivered.

The immediate power change of combined heat and power plants as well as power generating facilities other than hydro, gas turbine or motor power plants shall be at least $\pm 5\%$ of the rated capacity. It shall be possible to carry out the power change when the power output of the facility is 50–90% of the rated capacity. The power change can be limited to the maximum permitted power change restricted by the characteristics of the power generating facility in question when the power output of the facility is below 50%, but in this case the determining factors that limit the power change shall be reported as part of the data to be delivered.

11.3.5 House load operation

The power generating facility shall be designed in such a way that it can safely trip to house load operation when the voltages or frequencies of the connection point are such that the power generating facility can shift to house load operation by virtue of Section <u>10</u>. The power generating facility shall be able to trip to house load at any power level between the minimum capacity and rated capacity.

Hydropower plants and reserve gas turbine plants shall be able to operate on house load for at least 8 hours. Power generating facilities other than hydro and nuclear power plants shall be able to operate in house load operation for at least 1 hour, and be able to be restarted and resynchronised to the power system after this as soon as possible, taking the technical conditions into account; however, within a maximum of 4 hours during the next 12 hours. Nuclear power plants shall operate in house load operation and be available for start-up as prescribed in their safety regulations.

The following descriptions shall be provided as part of the data to be delivered:

- A description of the house load of the power generating facility. If the house load depends on the mode of operation of the power generating facility, the dependence of the house load on the mode of operation shall be described as part of the documentation to be delivered.
- 2) A description of how long the facility can operate in house load operation.

16.11.2018

3) Information on the delay between remaining in house load operation and synchronisation with the power system, and on the factors affecting the delay.

59 (129)

16.11.2018

12 Reactive power capacity of synchronous power generating modules

12.1 Reactive power capacity of type B synchronous power generating modules

The relevant network operator sets the reactive power capacity requirement for type B power generating facilities. However, the requirement shall not exceed the reactive power capacity requirement specified for type C and D synchronous power generating modules.

- 12.2 Reactive power capacity of type C and D synchronous power generating modules
- 12.2.1 Reactive power capacity required from generators

The generator(s) of the power generating facility shall be able to operate continuously at their rated capacity P_{max} when the power factor measured from the generator terminals is 0.95cap-0.9ind. Figure <u>12.1</u> illustrates this.

When the generator is operating at a power output below the rated capacity, it shall be able to generate or consume reactive power with the design voltage and frequency of the generator in accordance with the PQ diagram drawn up.

The power generating facility shall be able to limit the rise in the voltage of the connection point by consuming reactive power, when the voltage of the connection point is higher than the normal operating voltage specified by the relevant network operator. The power generating facility shall be able to limit the decrease in the voltage of the connection point by producing reactive power, when the voltage of the connection point is lower than the normal operating voltage specified by the relevant network operator.

12.2.2 Reactive power capacity required from synchronous power generating modules

The power generating facility shall be able to generate and consume reactive power (Q), within the operating range limited by its minimum output and rated capacity, when

UNOFFICIAL TRANSLATION

16.11.2018

overexcited or underexcited at a reactive power capacity corresponding to the facility's operating point at a power factor of 0.95 of rated power. The reactive power capacity range is shown in Figure 12.2a).

As illustrated in Figure 12.2b), the reactive power measured at the connection point shall be:

- 0-0.33 [Q/P_{max}] overexcited, when the voltage at the connection point is 0.90-1.00 pu.
- 0-0.33 [Q/P_{max}] underexcited, when the voltage at the connection point is 1.00-1.05 pu.

The power generating facility shall not be required to generate reactive power below the minimum output.

Figure 12.2. Reactive power capacity requirements for type C and D synchronous power generating modules as the function of active power and the voltage at the connection point. In the figure, a voltage of 1.0 pu corresponds to the normal operating voltage specified by the relevant network operator.

12.2.3 Supplementary reactive power capacity

With regard to reactive power capability, the relevant network operator may specify supplementary reactive power to be provided if the connection point of a synchronous power generating module is neither located at the high-voltage terminals of the generator transformer to the voltage level of the connection point nor at the alternator terminals, if no generator transformer exists.

This supplementary reactive power shall compensate the reactive power demand of the high-voltage line or cable and shall automatically adapt so that the reactive power available at the connection point is as specified in Section 12.2.2.

16.11.2018

12.2.4 Reactive power capacity calculation

The power generating facility owner shall provide the relevant network operator with a calculation of the power generating facility's reactive power capacity at the connection point. The calculation shall be delivered at stage 1 of the compliance process. The calculation shall demonstrate the capability of the power generating facility to generate and consume reactive power at the voltage levels specified for the connection point and at the active power output levels specified for power generating facilities in <u>Table 12.1</u>.

If the generator transformer of the power generating facility is equipped with an on-load tap-changer, the calculation shall be provided for not only the middle position of the on-load tap-changer but also for the automatic settings of the on-load tap-changer of the generator transformer.

In addition to the reactive power capacity specified for the power generating facility in the calculation, the reactive power capacity calculation shall present the input data used in the calculation, such as the voltage ranges and PQ diagrams of the generators. The setpoint values used in the reactive power limiters shall be specified in the reactive power capacity calculation document.

The reactive power capacity calculation shall take into account, where necessary, the generator and any other power generating facility components that generate and consume reactive power. The frequency value used in the calculation shall be 50 Hz.

Operating point 0.85 pu is momentary at the voltage levels of the connection point, and at this operating point the power generating facility shall be able to operate for a minimum of 10 seconds.

	Connection point's voltage [pu]	0.85*	0.90	1.00	1.10
	Power level 1	Minimum output			
	Power level 2	P=0.75*P max			
	Power level 3	Rated capacity			
	*Operating point 0.8	35 pu is momentary, at this operating point reactive power shall be produced for a minimum of 10 seconds			

Table 12.1. Operating points used in the reactive power capacity calculation.

If the actual components of the power generating facility are different from those planned, the reactive power capacity calculation shall be updated correspondingly and delivered to the relevant network operator.

The reactive power capacity of the power generating facility at the connection point, specified in the calculation, shall be verified during commissioning tests in accordance with the principles described in <u>Chapter 14</u>.

16.11.2018

12.2.5 Restriction of reactive power capacity

The limiters of voltage control of the generator and the power generating facility shall be designed and set so that their operation restricts the capability of the power generating facility to generate and consume reactive power as little as possible.

The additional adjustments and limiters of excitation system used for restricting the reactive power capacity and the protection related to the operation of excitation shall be co-ordinated so that the reactive power capacity of the generator can be utilised efficiently without the risk of the generator being disconnected from the grid.

UNOFFICIAL TRANSLATION

16.11.2018

13 Voltage control of synchronous power generating modules

13.1 Voltage control of type B synchronous power generating modules

With regard to the voltage control system, a synchronous power-generating module shall be equipped with a permanent automatic excitation control system that provides constant alternator terminal voltage at a selectable setpoint without instability over the entire operating range of the synchronous power-generating module.

- 13.2 Voltage control of type C synchronous power generating modules
- 13.2.1 Operation and method of voltage control

The generators of the power generating facility shall have constant voltage control for the terminal voltage of the generator. The control shall be carried out so that the control operates continuously and so that the changes in reactive power at the connection point as a result of the control take place steplessly.

The control shall enable the utilisation of the reactive power capacity of the power generating facility specified in Chapter <u>12</u> when the power generating facility generates active power to the power system. The functioning of the control shall not be disturbed by changes in the voltage and frequency of the grid or by momentary voltage disturbances.

The primary method of generator voltage control is the constant voltage control of the terminal voltage of the generator. If, for the needs of regional or local voltage control or for other corresponding reasons related to the operation of the power system, it is justified to use another control method or higher facility-level control, the control shall be able to respond, wherever necessary, to voltage changes in the same manner as the constant voltage control of the terminal voltage of the generator. The use of a method other than constant voltage control as the primary voltage control method of the power generating facility shall be agreed separately with the relevant network operator and Fingrid. The principles of voltage control setpoint configuration for power generating facilities are set out in Appendix <u>B</u>.

13.2.2

Performance of the automatic voltage regulator of generator

In order to safeguard the system security of the power system, the automatic voltage regulator shall have two channels. Both channels shall have automatic constant voltage control of the terminal voltage of the generator, and constant current control of the excitation current as its back-up system (manual control of the excitation current). The power converter of the excitation system shall be carried out so that a failure of one power semiconductor does not reduce the excitation system's performance as set out in the Specifications.

The automatic voltage regulator shall be designed so that its ceiling voltage is at least twice the excitation voltage corresponding to the design load of the generator¹ with static excitation and at least 1.6 times that with brushless excitation, however, taking into

¹ While at the rated load, the generator produces as much active power as what its rated capacity is, and as much reactive power as what its reactive power capacity is.

UNOFFICIAL TRANSLATION

16.11.2018

account all the other requirements set on voltage control. It shall be possible to maintain the ceiling voltage for at least 10 seconds.

When the setpoint of the automatic voltage regulator of a generator which is in no-load operation and disconnected from the grid is changed in steps upwards from 95 per cent to 105 per cent, the step response shall be as follows:

- 1) With static excitation, the rise time of the step response from zero to 90 per cent of the total change in the Terminal Voltage shall be 0.2–0.3 seconds,
- 2) With brushless excitation, the rise time of the step response from zero to 90 per cent of the total change in the terminal voltage shall be 0.2–0.5 seconds.

When the setpoint of the automatic voltage regulator of a generator which is in no-load operation and disconnected from the grid is changed in steps downwards from 105 per cent to 95 per cent, the step response shall be as follows:

- 1) With static excitation, the negative rise time of the step response from zero to 90 per cent of the total change in the terminal voltage shall be 0.2–0.3 seconds,
- 2) With brushless excitation, the negative rise time of the step response from zero to 90 per cent of the total change in the terminal voltage shall be 0.2–1.0 seconds.

The automatic voltage regulator shall be set so that the step response does not oscillate. The excess in the step responses specified above shall not be greater than 15 per cent of the measured total change in the terminal voltage.

The performance requirement for the generator's automatic voltage regulator shall be met at lower-than-normal or no higher than normal generator operating temperature, at which the uninterrupted test run during the generator's commissioning is carried out.

13.2.3 Performance calculation of the generator's automatic voltage regulator

The power generating facility owner shall provide the relevant network operator with a calculation of the performance of the automatic voltage regulator of the power generating facility. The calculation shall be delivered at stage 1 of the compliance process. The calculation shall demonstrate the performance of the automatic voltage regulator of the power generating facility when the setpoint of the automatic voltage regulator of a generator which is in no-load operation and disconnected from the grid is changed as set out in Section <u>13.2.2</u>:

- in steps upwards from 95 per cent to 105 per cent,
- in steps downwards from 95 per cent to 105 per cent.

A description of the model used in the calculation, including the parameters used in the calculation and the block diagram presentations of the control systems, shall be delivered as part of the calculation to the relevant network operator.

UNOFFICIAL TRANSLATION

16.11.2018

13.2.4 Modes and functionalities of the automatic voltage regulator of generator

The automatic voltage regulator shall operate with the constant voltage control of the terminal voltage of the generator. Moreover, the automatic voltage regulator may have other modes such as constant reactive power control or constant power factor control.

The control system shall include, in addition to the automatic voltage regulator and potential additional stabiliser, also functionalities which protect the generator from overloading.

It shall be possible to set the setpoint of constant voltage control in maximum steps of 0.01 pu in accordance with the limit values specified for the voltage of the generator (continuous operation).

The slope of voltage control shall be linear, and it shall be possible to set the slope within a range of 0–7 per cent in steps no greater than 0.5 percentage points. The setpoint can be set as positive or negative.

If the power generating facility has constant reactive power control, it shall be possible to set the setpoint in maximum steps of 1 Mvar.

13.2.5 Changes in the modes of automatic voltage regulator

Any transitions in the mode and operating point of the control shall take place without sudden and significant changes or repeated and significant oscillations in the active power or reactive power generated by the power generating facility.

The control of the modes of operation and setpoints of the automatic voltage regulator shall work in the same way regardless of whether the power generating facility is controlled locally or remotely.

13.2.6 Limiters and protection related to the functioning of voltage control

The current limiters of the generator shall have inverse time characteristics so that the overload range of the automatic voltage regulator of the generator can be utilised in various operation situations.

The functioning of the limiters shall control, as directly and delay-free as possible, the functioning of the automatic voltage regulator in order to avoid potential intense overvoltages or undervoltages at the connection point of the power generating facility.

The functioning of the limiter of underexcitation shall be co-ordinated with the current limiters (stator, rotor, excitation) as well as with the loss of excitation (LOE) and potential power system stabiliser (PSS).

The functioning of the limiter of overexcitation shall be co-ordinated with the current limiters as well as with overvoltage protection (stator, rotor, excitation) and the potential power system stabiliser (PSS).

16.11.2018

13.2.7 Other components contributing to the voltage control and reactive power control of the power generating facility

If separate compensation devices implemented as part of the power generating facility are utilised in order to achieve the reactive power capacity requirement, the functioning of such devices shall be co-ordinated with the functioning of the controllers of the generators of the power generating facility.

13.3 Voltage control of type D synchronous power generating modules

The voltage control requirements for type D synchronous power generating modules are the same as for type C power generating modules (Section <u>13.2</u>). Moreover, the voltage control of a type D power generating facility's generators shall be equipped with a power system stabiliser (PSS).

The structure of the PSS shall be such that the stabiliser can be tuned to damp the oscillations between the generator and the power system at frequencies of 0.2–2.0 Hz. The power system stabiliser shall be tuned to improve the damping of the local oscillation frequency between the power generating facility and the power system. The power system stabiliser shall not amplify inter-area oscillations of 0.3 Hz.

Fingrid recommends the use of power system stabilisers of the type PSS2A or PSS2B dual-input that conform to standard IEEE 421.5.The tuning of the power system stabiliser for the damping of system-frequency oscillations shall be agreed upon separately with Fingrid.

It shall be possible to disconnect the power system stabiliser, and it shall be possible to limit the magnitude of the stabilisation signal by means of limiters with adjustable settings.

The compliance of the power system stabiliser's functioning shall be verified during commissioning testing. Instructions for tuning the power system stabiliser are presented in Appendix \underline{C} of this document.

UNOFFICIAL TRANSLATION

16.11.2018

14 Commissioning testing of synchronous power generating modules

14.1 Shared requirements for the commissioning testing of all synchronous power generating modules

It is the responsibility of the power generating facility owner to verify that the operation of the power generating facility meets the specified requirements. The power generating facility owner shall be responsible for the costs of verification. Compliance with requirements shall primarily be verified through tests conducted during the commissioning of the power generating facility using the facility's normal primary energy source.

The relevant network operator and/or a representative of Fingrid may participate in the compliance testing either on site or remotely from the network control centre of the relevant network operator. For that purpose, the power generating facility owner shall provide the monitoring equipment necessary to record all relevant test signals and measurements as well as ensure that the necessary representatives of the power generating facility owner are available on site for the entire testing period. Signals specified by the relevant network operator or Fingrid shall be provided if, for selected tests, the network operator or Fingrid wishes to use its own equipment to record performance. The relevant network operator and Fingrid shall decide on their participation at their discretion.

14.2

Commissioning testing of type B synchronous power generating modules

The power generating facility owner shall deliver minutes of commissioning testing to the relevant network operator. The minutes shall comprise the documentation of the variables validated by means of measurements and the time of the measurements.

It is the responsibility of the power generating facility owner to verify by commissioning testing that the following characteristics of a type B synchronous power generating facility conform to the specifications:

- 1) Impact of the starting and stopping of the power generating facility on the voltage level at the connection point
 - The test shall verify that starting or stopping the power generating facility does not cause quality deviations in the network of the relevant network operator.
- 2) Rated capacity of the power generating facility
 - The test shall verify that the power generating facility has the rated capacity specified in the connection agreement.
- 3) Reactive power capacity of the power generating facility
 - The test shall verify the reactive power capacity of the power generating facility by running the facility at its rated capacity and at the highest possible inductive and capacitive reactive power.

68 (129)

16.11.2018

- 4) Functioning of voltage control
 - The test shall verify that the constant voltage control of the facility functions appropriately. If necessary, the relevant network operator shall provide additional instructions for the test.
- 5) Limited frequency sensitive mode overfrequency
 - The power generating facility's technical capability to continuously modulate active power to contribute to frequency control in case of any large increase of frequency in the system shall be demonstrated. The steady-state parameters of regulations, such as droop and deadband, and dynamic parameters, including frequency step change response shall be verified,
 - The test shall be carried out by simulating frequency steps and ramps big enough to trigger at least 10 % per cent of rated capacity change in active power, taking into account the droop settings and the deadband. The test can be performed by introducing an interfering signal of +0.7 Hz in the frequency measurement and using a droop of 4% and a deadband of 0.00 Hz.
 - The test shall be deemed successful if the requirements set out in Section 10.2.3 are fulfilled and no undamped power oscillations occur after the step change response.

Instead of the relevant test, the power generating facility owner may use equipment certificates issued by an authorised certifier to demonstrate compliance with the relevant requirement. In such a case, the equipment certificates shall be provided to the relevant network operator. As a rule, equipment certificates cannot be relied upon to demonstrate the interoperability of the power generating facility as a whole and of all of its auxiliary equipment. Consequently, equipment certificates shall not be accepted as a primary means of verifying compliance, and their use must be agreed on separately with the relevant network operator and Fingrid.

Commissioning testing of type C synchronous power generating modules

14.3.1 Commissioning test plans, measurements and data exchange

The commissioning testing shall be carried out in co-operation between the power generating facility owner, the relevant network operator, and Fingrid. Fingrid's representatives have the right to participate in all commissioning testing.

The power generating facility owner shall draw up a commissioning testing plan for the specific power generating facility. The plan shall cover the testing of the operation specified in the Specifications at least in the scope described in this section. The power generating facility owner shall deliver the commissioning test plan, preliminary commissioning instructions and a description of the practical arrangements of the tests. The description of the practical arrangements shall cover at least the measurement arrangements, responsible persons, and preliminary schedule. The documents shall be

UNOFFICIAL TRANSLATION

16.11.2018

delivered to the relevant network operator no later than 2 months before the planned start of the commissioning testing.

In conjunction with the drawing up and delivery of the commissioning test plans, the power generating facility owner shall arrange a meeting between the power generating facility owner, the relevant network operator, and Fingrid. The meeting shall take place no later than two months before the commissioning testing. In the meeting, the power generating facility owner shall agree on the final commissioning test plan and on the schedule and practical arrangements of the commissioning testing with the relevant network operator and Fingrid. If the above-mentioned parties agree that a meeting will not be held, the data exchange concerning the issues to be agreed shall be arranged in some other way. Each of the above-mentioned parties shall appoint at least one contact person for the commissioning testing.

As the transmission system operator, Fingrid has the right to cancel or change the schedule of the commissioning testing if the execution of the tests at the planned time is not possible due to the operation situation of the power system. The relevant network operator has a corresponding right with regard to the operation situation of its own electricity network. The cancellation or schedule change may be caused by factors such as circumstances related to the operation of power generating facilities or the operation situation of the local electricity network and power system. If the timing of the commissioning testing needs to be changed, the power generating facility owner shall agree on a new schedule with the relevant network operator and Fingrid.

At least the variables below shall be measured at a sampling rate of at least 1 kHz and recorded at a minimum recording frequency of 50 Hz in all commissioning testing:

- terminal voltage of the generator,
- excitation voltage of the generator or its excitation system,
- frequency of the generator,
- excitation current of the generator or its excitation system,
- active power of the generator, and
- reactive power of the generator

Moreover, the setpoint of the variable adjusted in the commissioning testing and the changes of the setpoint shall be recorded.

The commissioning testing shall be planned so that the correspondence of the actual operation of the power generating facility and the dynamic modelling data can be demonstrated by means of calculations.

14.3.2 Substituting the commissioning testing

Instead of the relevant test, the power generating facility owner may use equipment certificates issued by an authorised certifier to demonstrate compliance with the relevant

16.11.2018

requirement. In such a case, the equipment certificates shall be provided to the relevant network operator. As a rule, equipment certificates cannot be relied upon to demonstrate the interoperability of the power generating facility as a whole and of all of its auxiliary equipment. Consequently, equipment certificates shall not be accepted as a primary means of verifying compliance, and their use must be agreed on separately with Fingrid and the relevant network operator.

If the commissioning testing cannot be performed, for example, due to the operational situation of the power system, the power generating facility owner shall agree separately with Fingrid and the relevant network operator on substituting the commissioning testing. Fingrid shall determine whether any commissioning testing can be substituted with one of the following methods:

- equipment certificates issued by an authorised certifier, certificates issued by accredited laboratories, or equivalent detailed test reports of the turbine generators,
- 2) continuous monitoring,
- 3) simulation calculations carried out by utilising verified calculation models.

14.3.3 Documentation and acceptance of commissioning testing

It is the responsibility of the power generating facility owner to document the commissioning testing and its results in the commissioning report. The power generating facility owner shall deliver the commissioning report as an electronic document and the results of the commissioning testing in numerical format to the relevant network operator in the scope specified in Section <u>15.2.2</u>.

The power generating facility owner shall agree separately with the relevant network operator on the timing of tests of power generating facility projects which proceed in stages, described in Section 6.3.

It is the responsibility of the relevant network operator to confirm the fulfilment of the compliance obligation related to the requirements in terms of the commissioning testing based on the following four sectors:

- 1) The preparation, planning and data exchange of the tests have been carried out in accordance with the Specifications.
- 2) The tests have been carried out in accordance with the scope of the Specifications.
- 3) The operation of the power generating facility verified by the tests is in accordance with the Specifications and with the data provided on the power generating facility.
- 4) A commissioning report and measurement data in numerical format have been delivered of the tests related to the Specifications (Section <u>15.2.2</u>).

UNOFFICIAL TRANSLATION

16.11.2018

14.3.4 Functions to be verified in commissioning testing

The commissioning testing shall verify the following functions:

- 1) Limited frequency sensitive mode overfrequency (LFSM-O)
 - The power generating facility's technical capability to continuously modulate active power to contribute to frequency control in case of any large increase of frequency in the system shall be demonstrated. The steady-state parameters of regulations, such as droop and deadband, and dynamic parameters, including frequency step change response shall be verified,
 - The test shall be carried out by simulating frequency steps and ramps big enough to trigger at least 10% per cent of rated capacity change in active power, taking into account the droop settings and the deadband. The test can be performed by introducing an interfering signal of +0.7 Hz in the frequency measurement and using a droop of 4% and a deadband of 0.00 Hz.
 - The test shall be deemed successful if the requirements set out in Section <u>10.2.3</u> are fulfilled and no undamped power oscillations occur after the step change response.
- 2) Limited frequency sensitive mode underfrequency (LFSM-U)
 - The test shall demonstrate that the power generating facility is technically capable of continuously modulating active power at operating points below rated capacity to contribute to frequency control in case of a large frequency drop in the system.
 - The test shall be carried out by simulating appropriate active power load points, with low frequency steps and ramps big enough to trigger active power change of at least 10% of rated capacity, taking into account the droop settings and the deadband.

The test can be performed by introducing an interfering signal of -0.7 Hz in the frequency measurement and using a droop of 4% and a deadband of 0.00 Hz.

- The test shall be deemed successful if the requirements set out in Section <u>10.4.2</u> are fulfilled and no undamped power oscillations occur after the step change response.
- 3) Frequency sensitive mode and rate of change of active power in disturbance state
 - The power generating facility's technical capability to continuously modulate active power over the full operating range between rated capacity and minimum regulating level to contribute to frequency control shall be demonstrated in the test. The steady-state parameters of regulations, such as droop and deadband and dynamic parameters, including robustness through frequency step change response and large, fast frequency deviations shall be verified. At the start of the tests, the active power generation of the power generating facility shall be at least 30% of the rated capacity of the power generating facility,
UNOFFICIAL TRANSLATION

16.11.2018

and the control range of frequency control shall be at least $\pm 10\%$ of the rated capacity of the power generating facility.

 The test shall be carried out on the basis of network frequency measurement and by simulating frequency steps and ramps big enough to trigger the whole active power frequency response range, taking into account the settings of droop and deadband, as well as the capability to actually increase or decrease active power output from the respective operating point.

When performing the test, all interfering signals shall be reset to zero before introducing a new interfering signal. The test can be performed using the following procedures:

- The response of frequency control shall be measured for no less than 10 minutes on the basis of normal network frequency measurement.
- Using two different droop values, such as 4% and 6%, an interfering signal of +0.1 Hz shall be introduced by means of both steps and ramps.
- Using two different droop values, such as 4% and 6%, an interfering signal of +0.5 Hz shall be introduced by means of both steps and ramps.
 - Using two different droop values, such as 4% and 6%, an interfering signal of –0.1 Hz shall be introduced by means of both steps and ramps.
- Using two different droop values, such as 4% and 6%, an interfering signal of -0.5 Hz shall be introduced by means of both steps and ramps.
- The deadband shall be set to ± 10 mHz and the response of frequency control shall be measured for no less than 5 minutes on the basis of normal network frequency measurement.
- The deadband shall be set to ±100 mHz. An interfering signal of +50 mHz and -50 mHz shall be introduced, followed by an interfering signal of +150 mHz and -150 mHz.
- The droop shall be set to the minimum and maximum value of the droop setpoint range. The deadband shall be set to the minimum and maximum value of the deadband setpoint range.
- The test shall be deemed successful if the requirements set out in Section <u>11.3.3.</u> and Section <u>11.3.4.2</u> are fulfilled and no undamped power oscillations occur after the step change response.
- 4) Rate of change of active power
 - The test shall demonstrate the technical capability of the power generating facility to modulate active power within the operating range and at the rate of change defined in Section <u>11.3.4.1</u>.
 The test can be performed by lowering the active power of the power generating facility to the minimum level, where the required rate of change of active power change is possible, and afterwards, gradually increasing the active power of the

UNOFFICIAL TRANSLATION

16.11.2018

power generating facility to the maximum level, where the required rate of change of active power is possible. Once complete, the test shall be repeated in the opposite order.

- The test shall be deemed successful if the requirements set out in Section <u>11.3.4.1</u> are fulfilled and no undamped power oscillations occur during or after the power change.
- 5) Transition to house load operation
 - The test shall demonstrate the power generating facility's technical capability to trip to and stably operate on house load.
 - The test shall be carried out at the power generating facility's rated capacity and reactive power under normal operating conditions before disconnecting from the power system. Following the disconnection, stable house load operation must be demonstrated for a minimum period of one hour before re-synchronisation to the power system.
 - The test shall be deemed successful if tripping to house load is successful, stable house load operation has been demonstrated for a minimum period of one hour and re-synchronisation to the power system has been performed successfully.
- 6) Voltage control step response test at no load
 - The test shall demonstrate the power generating facility's voltage step change performance in accordance with the requirements set out in Section <u>13.2.2</u> with the generator operating at no load while disconnected from the network.
 - The test shall be deemed successful if the requirements set out in Section $\underline{13.2.2}$ are fulfilled and, following the step change response tests, the power generating facility is able to reach a stable operating point free of poorly damped reactive or active power oscillations.
- 7) Voltage control tests while connected to the network
 - The test shall demonstrate the technical capability of the power generating facility to regulate voltage and to function in accordance with the requirements set out in sections <u>13.2.4</u> and <u>13.2.5</u> when the generator is connected to the network.
 - The test shall consist of voltage control step response tests with the generator connected to the network. The tests shall demonstrate the ability to set the voltage control setpoint and slope.

The test can be performed using the following procedures:

The slope of voltage control is set to 2%, and the voltage control setpoint of the generator is changed as follows: 1.00 pu, 1.01 pu, 1.00 pu, 0.99 pu, 1.00 pu, 1.02 pu, 1.00 pu, 0.98 pu and 1.00 pu.

UNOFFICIAL TRANSLATION

16.11.2018

- The slope of voltage control is set to 4%, and the voltage control setpoint of the generator is changed as follows: 1.00 pu, 1.01 pu, 1.00 pu, 0.99 pu, 1.00 pu, 1.02 pu, 1.00 pu, 0.98 pu and 1.00 pu.
- The test shall be deemed successful if the requirements set out in sections <u>13.2.4</u> and <u>13.2.5</u> are fulfilled and, following the step change response tests, the power generating facility is able to reach a stable operating point free of poorly damped reactive or active power oscillations.
- 8) Limiters and protection related to the functioning of voltage control
 - The test shall demonstrate the limiters' capability to limit the generator's reactive power in accordance with the principles set out in sections <u>12.2.5</u> and <u>13.2.6</u> before protection activates.
 The test can be performed by making gradual changes in the voltage control setpoint of the generator, until both the inductive and capacitive limit is reached, at which point the limiter stops the change at the limit value. The test can also be performed in conjunction with the reactive power capacity test.
 - The test shall be deemed successful if the limiters allow extensive use of the generator's reactive power capacity in accordance with the principles set out in sections <u>12.2.5</u> and <u>13.2.6</u>.
- 9) Reactive power capacity test and restriction of active power
 - The test shall demonstrate the capability of the power generating facility to generate and consume reactive power in accordance with the requirements set out in Section <u>12.2</u>, and the test shall verify the results of the reactive power calculation. Additionally, the test shall verify the functioning of the facility's active power restriction and the accuracy of its active power control.

Before conducting the test, the power generating facility owner and the relevant network operator shall agree on the permissible voltage and reactive power ranges. The reactive power capacity test shall be restricted to within the range permitted by normal operating voltage range of the network.

- The test shall be performed at the maximum inductive and maximum capacitive reactive power of the power generating facility, with the power generating facility generating active power at three different operating points for the required operating time:
 - o at rated power, no less than 60 minutes
 - $\circ~$ at 75% of rated power, no less than 60 minutes
 - o at minimum power, no less than 60 minutes

The test can be performed by making gradual changes in the voltage control setpoint of the generator until both the inductive and capacitive limit is reached, at each active power level.

16.11.2018

- The test shall be deemed successful if the operating time at the required operating point is verified and the requirements set out in sections <u>11.3.3.4</u> and <u>12.2</u> are fulfilled.
- 10) Fault-ride-through capability
 - The test shall demonstrate the fault-ride-through capability of the power generating facility in accordance with the requirements set out in Section <u>10.3.2</u> (type C) or <u>10.5.2</u> (type D). The procedure for the fault-ride-through test shall be determined by Fingrid on a case-by-case basis. If a fault-ride-through test is not conducted, the functioning of the power generating facility in a local fault shall be demonstrated through simulation calculations and continuous monitoring when the facility is in operation.
- 14.4 Commissioning testing of type D synchronous power generating modules

The commissioning testing requirements for type D synchronous power generating modules are the same as for type C synchronous power generating modules (Section 14.3). In addition, the commissioning testing of type D power generating facilities shall verify the compliance and characteristics of the power system stabiliser (PSS) of the voltage control of the generator (Section 13.3). The commissioning testing of the power system stabiliser shall verify the response of the controller to electromechanical oscillations, because they have an impact on the transmission capacity of the grid and on the assessment of the transmission capacity.

The detailed content and scope of the commissioning testing of the power system stabiliser shall be agreed separately with Fingrid and with the relevant network operator. The commissioning testing shall cover at least the following issues:

- 1) The tests shall be carried out at the rated capacity and at least at one active power level which is different from it.
- 2) The response of the controllers of the power generating facility within the frequency range of system-frequency oscillations shall be verified in the commissioning testing. This can be done by changing the system switching situation or by feeding a separate signal, which imitates the oscillation, to the power generating facility controllers (test signal injection).
- 3) The functioning of the power generating facility and its controller shall be recorded extensively in numerical format using measurement equipment with a sufficient sampling frequency for the analysis of the response of the controller.

Instructions for tuning the power system stabiliser are presented in Appendix \underline{C} of this document.

16.11.2018

15 Modelling requirements applicable to synchronous power generating modules

- 15.1 Modelling requirements of type C and D synchronous power generating modules
- 15.1.1 Functional requirements of dynamics modelling data

The data to be delivered for the dynamics modelling shall enable the modelling of the interaction between the turbine generator of the power generating facility and the power system, taking into account the response of the turbine generator of the power generating facility and its impact on the following issues:

- 1) changes in the voltage amplitude and in its phase angle in conjunction with electromechanical transients,
- 2) electromechanical oscillations related to angle stability at frequencies 0.2–2 Hz following small and large signal disturbances,
- 3) high-speed (10 ms 10 s) transients related to voltage stability. These shall take into account the operation of the facility in conjunction with momentary voltage disturbances, and the dependence of the recovery of active power and the reactive power capacity on voltage.

If the provided modelling data is not standardised and unequivocal, the power generating facility owner shall provide Fingrid with a model that is compatible with the simulation software.

15.1.2 Requirements concerning the verification and documentation of the modelling data

The data to be delivered for the dynamics modelling shall be verified by comparing the modelling data, using the modelling results obtained, to the results of the commissioning testing of the power generating facility. The verification requirement of modelling data applies to power generating facilities in the scope presented in Tables <u>15.1</u> and <u>15.2</u>.

The data to be delivered for dynamics modelling shall be documented. The power generating facility owner shall deliver the data as electronic documents to the relevant network operator. The documents to be submitted shall be clear and unambiguous in terms of their layout and structure. The documentation shall cover the following main issues:

- 1) Alternator and prime mover, and the related mechanical rotating components
- 2) A block diagram of speed control and active power control and the associated parameters
- 3) A block diagram of voltage control and reactive power control and the associated parameters

16.11.2018

- 4) a block diagram of the power system stabiliser and the associated parameters (only for type D)
- 5) Results of verification of modelling data:
 - a) report of the verification of modelling data,
 - b) comparison of the modelling results and the results of the commissioning testing in the scope presented in Table <u>15.1</u>,
 - c) measurement results of the commissioning testing in numerical format in the scope presented in Table <u>15.2</u> in so far as Table <u>15.1</u> obliges verification,
 - d) account of potential differences between the modelling results and the results of the commissioning testing.

 Table 15.1. Verification obligation of modelling data on synchronous power generating modules by type.

Item to be verified	Туре С	Туре D
Step response of voltage control at no load (both the increase and decrease of voltage)	×	X
Reactive power capacity of the power generating facility and the functioning of limiters that restrict the capacity	x	Х
Functioning of power system stabiliser (PSS)	•	Х
Fault-ride-through test ¹		Х

¹ To be agreed on a case-by-case basis. If a fault-ride-through test for the power generating facility is not carried out,

the functioning of the power generating facility in a local fault shall be demonstrated by means of simulation calculations.

UNOFFICIAL TRANSLATION

16.11.2018

Table 15.2. Measurement data on commissioning testing to be delivered in numerical format, to which measurement data the results calculated using the modelling data is compared.

Item to be verified	U gen	Uf	f gen	I _{f or}	Pgen	Q _{gen}	Signals
		or U ef		l _{ef}			
Step response of generator voltage control (both the increase and decrease in voltage)	Х	Х	Х	Х		5	Voltage setpoint
Reactive power capacity of the power generating facility	Х	Х	Х	×	x	Х	Voltage setpoint
Functioning of power system stabiliser (PSS)	Х	×	×	x	Х	Х	PSS output signals
Fault-ride-through test	To be agreed on a case-by-case basis. If a fault-ride- through test for the power generating facility is not carried out, the functioning of the power generating facility in a local fault shall be demonstrated by means of simulation calculations.						
Ugen Terminal voltage of the generator Uer Excitation voltage of the excitation system Uf Excitation voltage of the generator Fgen Frequency of the generator lef Excitation current of the excitation system If Excitation current of the generator Pgen Active power of the generator Pgen Active power of the generator							
wgen Reactive power of the	yeneral	JI					

15.1.3 Specific study requirements

If calculation programs applicable to electromagnetic transients are used in conducting the specific studies, the simulation models of the power generating facility used in the simulation shall be delivered to Fingrid as part of the final report of the specific study. The said simulation model shall be updated after the commissioning testing and delivered to Fingrid as part of the final documentation of the power generating facility.

15.1.4

Requirements for the simulation models of compensation devices

Data for passive compensation devices, such as a capacitor bank, is attached to the modelling data. The simulation models for active compensation devices related to the power generating facility project shall be agreed upon separately with Fingrid.

16.11.2018

Requirements for power park modules

16 Active power control and frequency control of power park modules

16.1 Active power control and frequency control of a type A power park module

Type A power park modules shall have the functionalities required by active power control and frequency control, and maintaining of power output as described in Section 10.2. If the power generating facility characteristics include other functionalities related to active power control and frequency control, Fingrid has the right, if necessary, to utilise these functionalities as described in Section 16.3.1.

16.2 Active power control and frequency control of a type B power park module

Type B power park modules shall have the functionalities required by active power control and frequency control, and maintaining of power output as described in Section <u>10.3</u>. If the power generating facility characteristics include other functionalities related to active power control and frequency control, Fingrid has the right, if necessary, to utilise these functionalities as described in Section <u>12.2</u>.

16.3 Active power control and frequency control of type C and D power park modules

In addition to what is set out in this section, type C power park modules shall have the functionalities required by active power control and frequency control, and maintaining of power output as described in Section <u>10.4</u>.

In addition to what is set out in this section, type D power park modules shall have the functionalities required by active power control and frequency control, and maintaining of power output as described in Section <u>10.5</u>.

16.3.1 Fingrid's rights during disturbance in the power system

Fingrid has the right to demand power generating facilities to adjust themselves within the power control characteristics presented in this document, if the power system cannot be restored to the normal state after a disturbance.

- 16.3.2 Active power, start-up, and house load operation of power generating facility
- 16.3.2.1 Minimum Output

The minimum output of the power generating facility and its capability to operate momentarily below its minimum output limit shall be reported as part of the data to be delivered. The minimum output of the power generating facility shall be no more than 10 per cent of the rated capacity of the power generating facility.

If the power generating facility consists of several units and the minimum output is not evenly distributed between the power park units, the minimum outputs of individual units shall also be reported as part of the data to be delivered alongside the minimum output of the entire power generating facility.

UNOFFICIAL TRANSLATION

16.11.2018

16.3.2.2 Rated Capacity

The dependence of the active power output of the power generating facility on external factors, such as wind speed and the temperature of outdoor air, shall be reported as part of the data to be delivered.

If the power generating facility consists of several units and the rated capacity is not evenly distributed between the power park units, the rated capacities of individual units shall also be reported as part of the data to be delivered alongside the rated capacity of the entire power generating facility.

The data related to the overload capacity of the power generating facility shall be reported as part of the data to be delivered.

16.3.2.3 Start-up of power generating facility

The connection of the power generating facility to the power system shall not cause a change in excess of 3 per cent in the voltage of the connection point of the power generating facility.

The need to limit the gradient of increase in active power output during the start-up of the power generating facility shall be agreed separately with the relevant network operator.

16.3.2.4 House load

The house load power of the power generating facility shall be reported as part of the data to be delivered.

16.3.3 Implementation of active power control and frequency control

16.3.3.1 General controller requirements

The power generating facility shall be equipped with devices with which the active power and the rate of change of active power can be adjusted.

The active power control of the power generating facility shall allow the setting of the reference of active power manually and the adjustment of the active power on the basis of frequency measurement (frequency control).

16.3.3.2 Functionalities of frequency control

Frequency control shall function proportionally to the frequency deviation, in other words the control system shall have adjustable linear droop of frequency control.

It shall be possible to control the active power of the power generating facility so that as a result of the functioning of frequency control, the power generating facility can increase or decrease its active power generation based on the frequency variation. Restriction shall be possible for both the constant active power and in proportion to the maximum power available from the primary energy.

UNOFFICIAL TRANSLATION

16.11.2018

It shall be possible to specify a power range for frequency control, within which the active power generated by the power generating facility can be adjusted.

It shall be possible to set a deadband for the control.

16.3.3.3 Control parameters to be set

The setpoint of frequency control shall correspond to the nominal frequency of 50 Hz of the power system.

It shall be possible to adjust the droop of frequency control between 2 and 12 per cent in steps of a maximum of one percentage point.

It shall be possible to adjust the deadband of frequency control between 0.0 and 0.5 Hz in steps of a maximum of 0.01 Hz.

The power range to be specified for frequency control shall correspond to the rated capacity ($(0-100\%) \times P_{max}$) of the power generating facility, and it shall be possible to adjust it in steps of 1 MW.

It shall be possible to specify the power range for frequency control separately into a direction increasing the power output and to a direction decreasing the power output; in other words, it shall be possible to specify the range as asymmetrical.

16.3.4 Curtailment of active power

It shall be possible to curtail the upper limit of active power generation so that it shall be possible to specify a value smaller than the rated capacity for the highest permitted level of active power of the power generating facility.

The functioning of the upper limit set shall ensure that the active power generation, which is measured as 10 second averages, does not exceed the specified level.

It shall be possible to restrict the rate of the power change taking place in conjunction with the curtailment of active power, for example in the manner described in Section <u>16.3.5</u> or in a corresponding manner.

It shall be possible to set the upper limit setpoint at a minimum accuracy of 1 MW within the range limited by the minimum output and rated capacity of the power park module.

16.3.5 Restriction of rate of change of active power

It shall be possible to restrict the rate at which the active power generation of the power generating facility and its power park modules is changed.

It shall be possible to restrict the rate of change during an increase in active power in cases where there is a change in the active power limiter setpoint or an increase in the active power generation of the power generating facility due to an increase in primary energy production (e.g. when there is an increase in wind velocity).

UNOFFICIAL TRANSLATION

16.11.2018

If primary energy production decreases rapidly (e.g. when wind velocity decreases), there is no need to restrict the rate of change of active power. It shall be possible to restrict the rate of change of power if the setpoint of the active power limiter is decreased.

A description of the implementation method of the functionality shall be delivered as part of the power generating facility documentation.

It shall be possible to specify the setpoint of the rate of change of active power at least within a range where the minimum value is 10% of the rated capacity per minute and the maximum value is 100% of the rated capacity per minute $(0.1 \times P_{max}/min...1.0 \times P_{max}/min)$. The smallest change in the setpoint shall be at least one megawatt per minute (1 MW/min).

It shall be possible to specify the rate of change setpoints, which restrict the increase and decrease of active power, separately.

16.3.6 Rapid downward control of active power

It shall be possible to control the active power generation of the power generating facility down from 100 per cent to 20 per cent of the rated capacity in less than five seconds.

It shall be possible to restore the active power within a short period of time after downward control.

It is not necessary to implement the rapid downward control as a function of its own if it can be implemented by utilising the other functionalities of the power control system of the power generating facility.

16.3.7 Changes between the modes of active power control and frequency control

A change in the mode of active power control and frequency control shall not cause a major sudden variation in the active power or reactive power generated by the power generating facility.

It shall be possible to change, prevent and allow the modes of operation and setpoints of the active power control and frequency control of the power generating facility. The control of the modes of operation and setpoints shall work in the same way regardless of whether the power generating facility is controlled locally or remotely.

16.3.8 Accuracy and sensitivity of control

The accuracy of the active power control shall be at least 1 MW.

The sensitivity of frequency control shall be at least 10 mHz, and the response time shall be no more than 2 s.

The accuracy and sensitivity of the active power generating facility's power and frequency control shall be verified as part of commissioning testing. A description of these and of the factors affecting them shall be delivered as part of the power generating facility documentation.

UNOFFICIAL TRANSLATION

16.11.2018

16.3.9 Interrupting the generation of active power due to high wind

The wind turbine generators of the wind power park module shall not stop simultaneously due to high wind velocity. The stopping shall be graded, and the grading shall be based on the capability of the wind turbine generators to operate safely in high wind.

The implementation of the gradation of the automatic stopping of a wind turbine generator in terms of wind velocities which are critical in order to ensure functional safety and in terms of related delays shall be documented and delivered as part of the power generating facility documentation. The documentation shall also contain a description of the principles relating to continued generation after an interruption due to high wind velocities.

16.3.10 Restarting of generation after disconnection from the grid

The automatic start-up of electricity generation by the power generating facility after disconnection from the grid shall be agreed upon separately with the relevant network operator.

If the restarting of generation by the power generating facility after disconnection from the grid involves restrictions related to the operation and implementation of the power generating facility, a description of the restrictions shall be delivered as part of the power generating facility documentation.

UNOFFICIAL TRANSLATION

16.11.2018

17 Reactive power capacity of power park modules

17.1 Reactive power capacity of type B power park modules

The relevant network operator sets the reactive power capacity requirement for type B power generating facilities. However, the requirement shall not exceed the reactive power capacity requirement specified for type C and D power park modules.

- 17.2 Reactive power capacity of type C and D power park modules
- 17.2.1 Reactive Power capacity requirement

The power generating facility shall be able to generate and consume reactive power (Q), within the operating range limited by its minimum output and rated capacity, when overexcited or underexcited at a reactive power capacity corresponding to the facility's operating point at a power factor of 0.95 of rated power. The reactive power capacity range is shown in Figure 17.1a).

As illustrated in Figure 17.1b), the reactive power measured at the connection point shall be:

- 0-0.33 [Q/P_{max}] overexcited, when the voltage at the connection point is 0.90-1.00 pu.
- 0-0.33 [Q/ P_{max}] underexcited, when the voltage at the connection point is 1.00-1.05 pu.

The power generating facility shall not be required to generate reactive power below the minimum output.

Figure 17.1. Reactive power capacity requirements for type C and D power park modules as the function of active power and the voltage at the connection point. In the figure, a voltage of 1.0 pu corresponds to the normal operating voltage specified by the relevant network operator.

UNOFFICIAL TRANSLATION

16.11.2018

17.2.2 Supplementary reactive power capacity

With regard to reactive power capability, the relevant network operator may specify supplementary reactive power to be provided if the connection point of a power park module is neither located at the high-voltage terminals of the step-up transformer to the voltage level of the connection point nor at the alternator terminals, if no step-up transformer exists.

This supplementary reactive power shall compensate the reactive power demand of the high-voltage line or cable and shall automatically adapt so that the reactive power available at the connection point is as specified in Section <u>17.2.1</u>.

17.2.3 Components utilised to achieve the reactive power capacity requirement

Reactive power capacity does not need to be reserved in power park units only, but it can be reserved in one or more separate adjustable reactive power compensation devices, which have been connected to the power system to the connection point of the power generating facility or beyond it to be part of the other power generating facility equipment.

The functioning of components utilised so as to achieve the reactive power capacity requirement shall be co-ordinated with the functioning of the other power generating facility components that control voltage, in such a manner that the voltage control requirements and reactive power control requirements laid down for the power generating facility in Chapter <u>18</u> are fulfilled.

The testing, documentation and simulation requirements of devices used so as to fulfil the reactive power capacity requirement of the power generating facility shall be agreed upon separately with the relevant network operator in Stage 1 of the compliance process of the Specifications.

17.2.4 Reactive power capacity calculation

The power generating facility owner shall deliver a calculation of the reactive power capacity of the power generating facility at the connection point to the relevant network operator. The calculation shall be delivered at stage 1 of the compliance process. The calculation shall demonstrate the capability of the power generating facility to generate and consume reactive power at the voltage levels specified for the connection point and at the active power output levels specified for power generating facilities in <u>Table 17.1</u>. The setpoint values used in the reactive power limiters shall be specified in the reactive power capacity calculation document.

If the step-up transformer of the power generating facility is equipped with an on-load tapchanger, the calculation shall be provided for not only the middle position of the on-load tap-changer but also for the automatic settings of the on-load tap-changer of the step-up transformer.

In addition to the reactive power capacity specified for the power generating facility in the calculation, the reactive power capacity calculation shall present the input data used in the calculation, such as the voltage ranges and reactive power capacities of the power park units.

UNOFFICIAL TRANSLATION

16.11.2018

The reactive power capacity calculation shall take into account, where necessary, the power park units and any other power generating facility components that generate and consume reactive power. The frequency value used in the calculation shall be 50 Hz.

Operating point 0.85 pu is momentary at the voltage levels of the connection point, and at this operating point the power generating facility shall be able to operate for a minimum of 10 seconds.

Table 17.1. Operating points used in the reactive power capacity calculation.

Connection point's voltage [pu]	0.85*	0.90	1.00	1.10				
Power level 1	Minimum output							
Power level 2	<i>P=0.50*P</i> max							
Power level 3	Rated capacity							
*Operating point 0.85 pu is momentary, at this operating point reactive power shall be produced for a minimum of 10 seconds								

If the actual components of the power generating facility are different from those planned, the reactive power capacity calculation shall be updated correspondingly and delivered to the relevant network operator.

The reactive power capacity of the power generating facility at the connection point, specified in the calculation, shall be verified during commissioning in accordance with the principles described in Chapter <u>19</u>.

17.2.5 Restriction of reactive power capacity

When operating outside the limit values specified in Section <u>17.2.1</u>, the reactive power generation capacity of the power generating facility and its power generating units shall be in accordance with that indicated in the reactive power capacity calculation, and it must not be limited by means of software.

The protection related to the operation of current limiters (or equivalent equipment) used in the power generating facility shall be co-ordinated so that the available reactive power capacity can be utilised efficiently without the risk of the power generating facility disconnecting from the power system.

87 (129)

UNOFFICIAL TRANSLATION

16.11.2018

18 Voltage control and reactive power control of power park modules

18.1 Voltage control and reactive power control of a type B power park module

The power generating facility shall be able to operate at a power factor of 1.0 measured at the connection point, or alternatively the power generating facility shall be able to support the voltage of the connection point by means of its reactive power capacity, as follows:

- The power generating facility generates reactive power to the power system when the voltage of the connection point decreases.
- The power generating facility consumes reactive power from the power system when the voltage of the connection point increases.
- 18.2 Voltage control and reactive power control of a type C power park module
- 18.2.1 Functionalities of voltage control and reactive power control

The power generating facilities shall have automatic reactive power control and voltage control. The control shall be carried out so that the control operates continuously and so that the changes in reactive power at the connection point as a result of the control take place steplessly.

Voltage control and reactive power control shall enable the utilisation of the reactive power capacity of the power generating facility in the manner described in chapter <u>17</u>. The functioning of the control shall not be disturbed by changes in the voltage and frequency of the power system or by momentary voltage disturbances.

The voltage control and reactive power control of the power generating facility shall have the following operating modes:

- 1) constant voltage control
- 2) constant reactive power control, and
- 3) constant power factor control

The control range of voltage control and reactive power control shall correspond to the actual reactive power capacity of the power generating facility. The reactive power capacity shall not be artificially limited. The basic operation of limiters implemented in order to guarantee the electrical strength of the power generating facility components shall be described as part of the power generating facility documentation to be delivered.

The voltage control functions and reactive power control functions shall be able to keep the reactive power generation of the power generating facility within the reference value of the control function. The accuracy of the voltage control functions and reactive power control functions shall be verified during the commissioning testing. The response of the control functions to stepwise changes and to continuous variation in the voltage of the power system shall be stable, and the control functions to be carried out as a result of the

UNOFFICIAL TRANSLATION

16.11.2018

changes shall not lead to repeated or poorly damping oscillations in the reactive power or active power of the facility.

If the power park module is operating below its minimum output (P_{min}), the power park module does not have an obligation, from the viewpoint of the Specifications, to control the voltage or reactive power of the connection point.

18.2.2 Constant voltage control

The power generating facility shall be able to operate at constant voltage control so that the control can be used, considering the slope, for controlling directly the voltage of the connection point.

It shall be possible to adjust the constant voltage control setpoint within the continuous operating range limit values specified for the voltage of the connection point in steps no greater than 0.01 pu. Defining a deadband for voltage control shall not be allowed.

The slope of voltage control shall be linear, and it shall be possible to set the slope within a range of 2–7 per cent in steps no greater than 0.5 percentage points. The reference value can be set as positive or negative depending on the implementation of the voltage control of the power generating facility.

With the power generating facility connected to the network, when the stepwise change in the voltage of the connection point or the change in the reference value of the automatic voltage regulator is less than 0.05 pu, the response of constant voltage control shall be as follows:

- 1) the rise time of the reactive power response from 0 to 90 per cent of the measured total change in reactive power shall be 0.2–1.0 seconds,
- the exceeding verified in the step response shall not be more than 15 per cent of the measured total change in reactive power,
- 3) the response shall settle to its target level within 5 seconds from the stepwise excitation,
- When steady-state stability is achieved, the actual value of reactive power shall deviate by no more than ±5% of the reactive power target value, up to a maximum of ±1 Mvar.

18.2.2.1 Constant voltage control performance calculation

The power generating facility owner shall provide the relevant network operator with a calculation of the performance of the automatic voltage regulator of the power generating facility. The calculation shall be delivered at stage 1 of the compliance process. The calculation shall demonstrate the performance of the automatic voltage regulator of the power generating facility when the regulator's setpoint is changed in the following manner:

16.11.2018

- The slope of the power generating facility is set to 2%, and the voltage control setpoint of the power generating facility is changed as follows: 1.00 pu, 1.01 pu, 1.00 pu, 0.99 pu, 1.00 pu, 1.02 pu, 1.00 pu, 0.98 pu and 1.00 pu.
- The slope of the power generating facility is set to 4%, and the voltage control setpoint of the power generating facility is changed as follows: 1.00 pu, 1.01 pu, 1.00 pu, 0.99 pu, 1.00 pu, 1.02 pu, 1.00 pu, 0.98 pu and 1.00 pu.

A description of the model used in the calculation, including the parameters used in the calculation and the block diagram presentations of the control systems, shall be delivered as part of the calculation to the relevant network operator.

18.2.3 Constant reactive power control

The power generating facility shall be able to operate at constant reactive power control so that the control can be used for controlling directly the reactive power fed to the connection point and the reactive power taken from the connection point.

The reactive power measurement accuracy for constant reactive power control, measured at the connection point, shall be at least 1 MVar (tolerance: ± 0.5 Mvar). The setting range of the reference value shall correspond to the actual reactive power capacity of the power generating facility.

The constant reactive power control shall achieve its target value within 10 seconds of a change in the reactive power setpoint of the power generating facility.

18.2.4 Constant power factor control

The power generating facility shall be able to operate at constant power factor control so that the control can be used for controlling directly the power factor of the connection point, i.e. the reactive power fed to the connection point and the reactive power taken from the connection point as a function of the active power generated by the power generating facility.

It shall be possible to set the reference value of constant power factor control for the power factor in maximum steps of 0.01 between 0.95ind–0.95cap or in a broader range.

The voltage measurement accuracy for constant power factor control, measured at the connection point, shall be at least 0.01 (tolerance: ± 0.005).

The constant power factor control shall achieve its target value within 10 seconds of a sudden change in the active power of the power generating facility.

18.2.5 Changes in the modes and reference values of voltage control and reactive power control

Any transitions in the mode and operating point of the control shall take place without sudden significant changes (no more than 5 per cent of the rated capacity) or repeated, significant oscillations in the active power or reactive power produced by the power

16.11.2018

generating facility. The mode transition shall take place within a predetermined period of time after the mode transition is requested from the power generating facility.

The control of the modes of operation and setpoints of the automatic voltage regulator shall work in the same way regardless of whether the power generating facility is controlled locally or remotely.

18.2.6 Protection and limiters related to the functioning of voltage control

When the voltage of the connection point of the power generating facility is high, the functioning of the limiters shall control, in as direct and delay-free manner as possible, the functioning of the voltage control in order to avoid intense overvoltages.

18.2.7 Other components contributing to voltage control and reactive power control

If separate compensation devices implemented as part of the power generating facility are utilised in order to achieve the reactive power capacity requirement, the functioning of such devices shall be co-ordinated with the functioning of the controllers of the power park modules so as to fulfil the other requirements laid down in Chapter 18. Moreover, the need to co-ordinate the functioning of the devices with the other components contributing to the control of voltage in the power system shall be agreed upon separately with the relevant network operator.

Voltage control and reactive power control of a type D power park module

Power park modules belonging to power class D shall meet all of the requirements concerning type C power park modules. Furthermore, type D power park modules shall be subject to additional requirements concerning the impact of voltage control and reactive power control on electromechanical oscillations.

When tuning the setpoint for voltage control and reactive power control, the potential impact of the functioning of the relevant controller on the dynamics of the power system shall be taken into account. The analysis of the response of voltage control and reactive power control shall be carried out in close co-operation between the power generating facility owner, the relevant network operator and Fingrid in order to be able to specify the impact of the power generating facility on the transmission capacity of the power system so that it supports the functioning of the power system as well as possible.

If the response of the normal control functions of the power generating facility to electromechanical oscillations deteriorates the transmission capacity of the power system irrespective of the implementation and set values of the controls, the impact of the response of the control of the power generating facility on the oscillations shall be improved by means of additional control functions, such as functionalities corresponding to power system stabiliser (PSS) or power oscillation damping (POD).

The details related to the control settings shall be documented comprehensively and delivered as part of the data to be provided.

The functioning of the control shall be verified during the commissioning testing.

UNOFFICIAL TRANSLATION

16.11.2018

19 Commissioning testing of power park modules

19.1 Shared requirements for the commissioning testing of all power park modules

It is the responsibility of the power generating facility owner to verify that the operation of the power generating facility meets the specified requirements. The power generating facility owner is responsible for the costs related to the compliance process. Compliance with requirements shall primarily be verified through tests conducted during the commissioning of the power generating facility using the facility's normal primary energy source.

The relevant network operator and/or a representative of Fingrid may participate in the compliance testing either on site or remotely from the network control centre of the relevant network operator. For that purpose, the power generating facility owner shall provide the monitoring equipment necessary to record all relevant test signals and measurements as well as ensure that the necessary representatives of the power generating facility owner are available on site for the entire testing period. Signals specified by the relevant network operator or Fingrid shall be provided if, for selected tests, the network operator or Fingrid wishes to use its own equipment to record performance. The relevant network operator and Fingrid shall decide on their participation at their discretion.

Commissioning testing for type B power park modules

The power generating facility owner shall deliver minutes of commissioning testing to the relevant network operator. The minutes shall comprise the documentation of the variables validated by means of measurements and the time of the measurements.

It is the responsibility of the power generating facility owner to verify by commissioning testing that the following characteristics of a type B power park module conform to the Specifications:

- 1) Impact of the starting and stopping of the power generating facility on the voltage level at the connection point
 - The test shall verify that starting or stopping the power generating facility does not cause quality deviations in the network of the relevant network operator.
- 2) Rated capacity of the power generating facility
 - The test shall verify that the power generating facility has the rated capacity specified in the connection agreement.
- 3) Reactive power capacity of the power generating facility
 - The test shall verify the reactive power capacity of the power generating facility by running the facility at its rated capacity and at the highest possible inductive and capacitive reactive power.

16.11.2018

- 4) Functioning of voltage control
 - The test shall verify that the constant voltage control of the facility functions appropriately. If necessary, the relevant network operator shall provide additional instructions for the test.
- 5) Limited frequency sensitive mode overfrequency (LFSM-O)
 - The power generating facility's technical capability to continuously modulate active power to contribute to frequency control in case of any large increase of frequency in the system shall be demonstrated. The steady-state parameters of regulations, such as droop and deadband, and dynamic parameters, including frequency step change response shall be verified,
 - The test shall be carried out by simulating frequency steps and ramps big enough to trigger at least 10 % per cent of rated capacity change in active power, taking into account the droop settings and the deadband. The test can be performed by introducing an interfering signal of +0.7 Hz in the frequency measurement and using a droop of 4% and a deadband of 0.00 Hz.
 - The test shall be deemed successful if the requirements set out in Section 10.2.3 are fulfilled and no undamped power oscillations occur after the step change response.

Instead of the relevant test, the power generating facility owner may use equipment certificates issued by an authorised certifier to demonstrate compliance with the relevant requirement. In such a case, the equipment certificates shall be provided to the relevant network operator. As a rule, equipment certificates cannot be relied upon to demonstrate the cooperation of the power generating facility as a whole and of all of its auxiliary equipment. Consequently, equipment certificates shall not be accepted as a primary means of verifying compliance, and their use must be agreed on separately with the relevant network operator and Fingrid.

Commissioning testing for type C power park modules

19.3.1 Commissioning test plans, measurements and data exchange

The commissioning testing shall be carried out in co-operation between the power generating facility owner, the relevant network operator, and Fingrid. Fingrid's representatives have the right to participate in all commissioning testing.

The power generating facility owner shall draw up a commissioning testing plan for the specific power generating facility. The plan shall cover the testing of the functionalities at least in the scope described in this section. The power generating facility owner shall deliver the commissioning test plan, preliminary commissioning instructions and a description of the practical arrangements of the tests. The description of the practical arrangements shall cover at least the measurement arrangements, responsible persons,

16.11.2018

and preliminary schedule. The documents shall be delivered to the relevant network operator no later than 2 months before the planned start of the commissioning testing.

In conjunction with the drawing up and delivery of the commissioning test plans, the power generating facility owner shall arrange a meeting between the power generating facility owner, the relevant network operator, and Fingrid. The meeting shall take place no later than two months before the commissioning testing. In the meeting, the power generating facility owner shall agree on the final commissioning test plan and on the schedule and practical arrangements of the commissioning testing with the relevant network operator and Fingrid. If the above-mentioned parties agree that a meeting will not be held, the data exchange concerning the issues to be agreed shall be arranged in some other way. Each of the above-mentioned parties shall appoint at least one contact person for the commissioning testing.

As the transmission system operator, Fingrid has the right to cancel or change the schedule of the commissioning testing if the execution of the tests at the planned time is not possible due to the operation situation of the power system. The relevant network operator has a corresponding right with regard to the operation situation of its own electricity network. The cancellation or schedule change may be caused by factors such as circumstances related to the operation of power generating facilities or the operation situation of the local electricity network and national power system. If the timing of the commissioning testing needs to be changed, the power generating facility owner shall agree on a new schedule with the relevant network operator and Fingrid.

At least the below variables shall be measured and recorded in all commissioning testing at a minimum recording frequency of 50 Hz:

- active power of power generating facility,
- reactive power of power generating facility,
- voltage at the connection point,
- frequency at the connection point

Moreover, the setpoint of the variable adjusted in the commissioning testing and the changes of the setpoint shall be recorded.

The commissioning testing shall be planned so that the correspondence of the actual operation of the power generating facility and the dynamic modelling data can be demonstrated by means of calculations.

19.3.2 Substituting the commissioning testing

Instead of the relevant test, the power generating facility owner may use equipment certificates issued by an authorised certifier to demonstrate compliance with the relevant requirement. In such a case, the equipment certificates shall be provided to the relevant network operator. As a rule, equipment certificates cannot be relied upon to demonstrate the cooperation of the power generating facility as a whole and of all of its auxiliary equipment. Consequently, equipment certificates shall not be accepted as a primary

UNOFFICIAL TRANSLATION

16.11.2018

means of verifying compliance, and their use must be agreed on separately with Fingrid and the relevant network operator.

If the commissioning testing cannot be performed, for example, due to the operational situation of the power system, the power generating facility owner shall agree separately with Fingrid and the relevant network operator on substituting the commissioning testing. Fingrid shall determine whether any commissioning testing can be substituted with one of the following methods:

- equipment certificates issued by an authorised certifier, certificates issued by accredited laboratories, or equivalent detailed test reports of the turbine generators,
- 2) continuous monitoring,
- 3) simulation examinations carried out by utilising verified calculation models.

19.3.3 Documentation and acceptance of commissioning testing

It is the responsibility of the power generating facility owner to document the commissioning testing and its results in the commissioning report. The power generating facility owner shall deliver the commissioning report as an electronic document and the results of the commissioning testing in numerical format to the relevant network operator in the scope specified under Section 20.2.5.

The power generating facility owner shall agree separately with the relevant network operator on the timing of tests of power generating facility projects which proceed in stages, described in Section 6.3.

It is the responsibility of the relevant network operator to confirm the fulfilment of the compliance obligation related to the requirements in terms of the commissioning testing based on the following four sectors:

- 1) The preparation, planning and data exchange of the tests have been carried out in accordance with the Specifications.
- 2) The tests have been carried out in accordance with the scope of the Specifications.
- 3) The operation of the power generating facility verified by the tests is in accordance with the Specifications and with the data provided on the power generating facility.
- A commissioning report and measurement data in numerical format have been delivered of the tests related to the Specifications in accordance with the Specifications (Section <u>20.2.5</u>).
- 19.3.4 Functions to be verified in commissioning testing

The commissioning testing shall verify the following functions:

UNOFFICIAL TRANSLATION

16.11.2018

- 1) Limited frequency sensitive mode overfrequency (LFSM-O)
 - The power generating facility's technical capability to continuously modulate active power to contribute to frequency control in case of any large increase of frequency in the system shall be demonstrated. The steady-state parameters of regulations, such as droop and deadband, and dynamic parameters, including frequency step change response shall be verified,
 - The test shall be carried out by simulating frequency steps and ramps big enough to trigger at least 10% per cent of rated capacity change in active power, taking into account the droop settings and the deadband. The test can be performed by introducing an interfering signal of +0.7 Hz in the frequency measurement and using a droop of 4% and a deadband of 0.00 Hz.
 - The test shall be deemed successful if the requirements set out in Section <u>10.2.3</u> are fulfilled and no undamped power oscillations occur after the step change response.
- 2) Limited frequency sensitive mode underfrequency (LFSM-U)
 - The test shall demonstrate that the power generating facility is technically capable of continuously modulating active power at operating points below rated capacity to contribute to frequency control in case of a large frequency drop in the system.
 - The test shall be carried out by simulating appropriate active power load points, with low frequency steps and ramps big enough to trigger active power change of at least 10% of rated capacity with a starting point of no more than 80% on rated capacity, taking into account the droop settings and the deadband. The test can be performed by introducing an interfering signal of –0.7 Hz in the frequency measurement and using a droop of 4% and a deadband of 0.00 Hz.
 - The test shall be deemed successful if the requirements set out in Section <u>10.4.2</u> are fulfilled and no undamped power oscillations occur after the step change response.
- 3) Frequency sensitive mode
 - The power generating facility's technical capability to continuously modulate active power over the full operating range between rated capacity and minimum regulating level to contribute to frequency control shall be demonstrated in the test. The steady-state parameters of regulations, such as droop and deadband and dynamic parameters, including robustness through frequency step change response and large, fast frequency deviations shall be verified. At the start of the tests, the active power generation of the power generating facility shall be at least 30% of the rated capacity of the power generating facility, and the control range of frequency control shall be at least ±10% of the rated capacity of the power generating facility.
 - The test shall be carried out on the basis of network frequency measurement and by simulating frequency steps and ramps big enough to trigger the whole active

UNOFFICIAL TRANSLATION

16.11.2018

power frequency response range, taking into account the settings of droop and deadband, as well as the capability to actually increase or decrease active power output from the respective operating point.

The rate of change of the active power setpoint shall be set to the highest permissible value for the duration of the test.

When performing the test, all interfering signals shall be reset to zero before introducing a new interfering signal. The test can be performed using the following procedures:

- The response of frequency control shall be measured for no less than 10 minutes on the basis of normal network frequency measurement.
- Using two different droop values, such as 4% and 6%, an interfering signal of +0.1 Hz shall be introduced by means of both steps and ramps.
- Using two different droop values, such as 4% and 6%, an interfering signal of +0.5 Hz shall be introduced by means of both steps and ramps.
- Using two different droop values, such as 4% and 6%, an interfering signal of –0.1 Hz shall be introduced by means of both steps and ramps.
- Using two different droop values, such as 4% and 6%, an interfering signal of –0.5 Hz shall be introduced by means of both steps and ramps.
- The deadband shall be set to ±10 mHz and the response of frequency control shall be measured for no less than 5 minutes on the basis of normal network frequency measurement.
- The deadband shall be set to ±100 mHz. An interfering signal of +50 mHz and –50 mHz shall be introduced, followed by an interfering signal of +150 mHz and –150 mHz.
- The droop shall be set to the minimum and maximum value of the droop setpoint range. The deadband shall be set to the minimum and maximum value of the deadband setpoint range.
- The test shall be deemed successful if the requirements set out in sections <u>16.3.3</u> and <u>16.3.8</u> are fulfilled and no undamped power oscillations occur after the step change response.
- 4) Rate of change of active power
 - The test shall demonstrate the technical capability of the power generating facility to modulate active power within the operating range and at the rate of change defined in Section <u>16.3.5</u>.
 The test shall be conducted using two different values for the rate of change of active power: 0.1×P_{max}/min and 1.0×P_{max}/min.
 The test can be performed by gradually lowering the active power of the power generating facility to max and attenuate active power of the power generating facility to max.

generating facility to its minimum and, afterwards, gradually increasing the active power of the power generating facility to its maximum. Once complete, the test shall be repeated in the opposite order.

16.11.2018

- The test shall be deemed successful if the requirements set out in Section <u>16.3.5</u> are fulfilled and no undamped power oscillations occur during or after the power change.
- 5) Constant voltage control
 - The test shall demonstrate the technical capability of the power generating facility to regulate voltage and to function in accordance with the requirements set out in sections <u>18.2.2</u> and <u>18.2.5</u> when the power generating facility is connected to the network.
 - The test shall consist of voltage control step response tests performed with the power generating facility connected to the network. The tests shall demonstrate the performance of voltage control and the ability to set the required setpoint and slope.

The test can be performed using the following procedures:

- The slope of voltage control is set to 2%, and the voltage control setpoint of the power generating facility is changed as follows: 1.00 pu, 1.01 pu, 1.00 pu, 0.99 pu, 1.00 pu, 1.02 pu, 1.00 pu, 0.98 pu and 1.00 pu.
 - The slope of voltage control is set to 4%, and the voltage control setpoint of the power generating facility is changed as follows: 1.00 pu, 1.01 pu, 1.00 pu, 0.99 pu, 1.00 pu, 1.02 pu, 1.00 pu, 0.98 pu and 1.00 pu.
- The test shall be deemed successful if the requirements set out in sections <u>18.2.2</u> and <u>18.2.5</u> are fulfilled and, following the step change response tests, the power generating facility is able to reach a stable operating point free of poorly damped reactive or active power oscillations.
- 6) Constant reactive power control
 - The test shall demonstrate the technical capability of the power generating facility to regulate reactive power and to function in accordance with the requirements set out in sections <u>18.2.3</u> and <u>18.2.5</u> when the power generating facility is connected to the network.
 - The test shall include stepwise changes in reactive power when the power generating facility is connected to the network. The tests shall demonstrate the performance of reactive power control and the ability to set the required setpoint. The test can be performed by making changes in the constant reactive power control setpoint of the power generating facility, for example, in steps of 1 Mvar.
 - The test shall be deemed successful if the requirements set out in sections <u>18.2.3</u> and <u>18.2.5</u> are fulfilled and, following the stepwise change in reactive power, the power generating facility is able to reach a stable operating point free of poorly damped reactive or active power oscillations.

UNOFFICIAL TRANSLATION

16.11.2018

- 7) Constant power factor control
 - The test shall demonstrate the technical capability of the power generating facility to regulate the power factor measured from the connection point in accordance with the requirements set out in sections <u>18.2.4</u> and <u>18.2.5</u> when the power generating facility is connected to the network.
 - The test shall consist of stepwise changes in reactive power, achieved by adjusting the power factor, with the power generating facility connected to the network. The tests shall demonstrate the performance of power factor control and the ability to set the required setpoint.
 The test can be performed by making changes in the power factor control setpoint of the power generating facility (for example, in steps of 0.01).
 - The test shall be deemed successful if the requirements set out in sections <u>18.2.4</u> and <u>18.2.5</u> are fulfilled and, following the stepwise change in reactive power, the power generating facility is able to reach a stable operating point free of poorly damped reactive or active power oscillations.
- 8) Reactive power capacity test and restriction of active power
 - The test shall demonstrate the capability of the power generating facility to generate and consume reactive power in accordance with the requirements set out in Section <u>17.2</u>, and the test shall verify the results of the reactive power calculation. Additionally, the test shall verify the functioning of the facility's active power restriction and the accuracy of its active power control.
 - Before conducting the test, the power generating facility owner and the relevant network operator shall agree on the permissible voltage and reactive power ranges. The reactive power capacity test shall be restricted to within the range permitted by normal operating voltage range of the network.
 - The test shall be performed at the maximum inductive and maximum capacitive reactive power of the power generating facility, with the power generating facility generating active power at three different operating points for the required operating time:
 - o at more than 60% of rated capacity: no less than 30 minutes,
 - o at 30...50% of rated capacity: no less than 30 minutes, and
 - o at 10...20% of rated capacity: no less than 60 minutes.
 - The test can be performed by making gradual changes in the voltage control setpoint of the power generating facility until both the inductive and capacitive limit is reached, at each active power level.
 - The test shall be deemed successful if the requirements set out in sections <u>16.3.4</u>, <u>16.3.8</u> and <u>17.2</u> are fulfilled.

99 (129)

UNOFFICIAL TRANSLATION

16.11.2018

- 9) Rapid downward control of active power
 - The test shall demonstrate the technical capability of the power generating facility to rapidly down-regulate active power as specified in Section <u>16.3.6</u>. The test can be performed by lowering the active power of the power generating facility from its rated capacity to an active power level of 20%.
 - The test shall be deemed successful if the requirements set out in Section <u>16.3.6</u> are fulfilled and no undamped power oscillations occur as a result of the power change.

10) Starting and stopping

- The test shall demonstrate that starting and stopping the power generating facility does not cause quality deviations in the network of the relevant network operator.
- The test shall be deemed successful if the requirements set out in Section <u>16.3.2.3</u> as well as the requirements for electricity quality specified by the relevant network operator are fulfilled.
- 11) Fault-ride-through capability
 - The test shall demonstrate the fault-ride-through capability of the power generating facility in accordance with the requirements set out in Section <u>10.3.2</u> (type C) or <u>10.5.2</u> (type D). The procedure for the fault-ride-through test shall be determined by Fingrid on a case-by-case basis. If a fault-ride-through test is not conducted, the functioning of the power generating facility in case of a local fault shall be demonstrated through simulation calculations and continuous monitoring when the facility is in operation.

19.4 Commissioning testing for type D power park modules

The commissioning testing requirements for type D power park modules are the same as for type C power park modules (section <u>19.3</u>). If the voltage control functions of a type D power park module influence electromechanical oscillations in a manner that reduces the transmission capacity of the power system, the power generating facility owner and Fingrid shall separately agree on the verification of the additional control functions set out in Section <u>18.3</u>.

16.11.2018

20 Modelling requirements applicable to power park modules

- 20.1 Modelling requirements applicable to type C and D power park modules
- 20.1.1 General simulation model requirements

The simulation models to be supplied on power park modules shall reproduce the main functionalities and characteristics of the power park module realistically.

The simulation models shall be delivered either as a model compatible with the calculation software specified by Fingrid or as detailed block diagram level descriptions, with the set values. The models may be substituted with block diagram models and parameter listings generated with other calculation software, provided that the models are compliant with publicly documented standards (IEC or IEEE).

20.1.2 Aggregation of power generating facility for the simulation model

The power flow simulation models, fault current simulation models and dynamics simulation models of each power generating facility shall be delivered as an entity compiled into a single equivalent generator. The model shall cover – alongside the equivalent generator – the transformers needed to connect the generator and the power generating facility to the power system. The aggregation requirement does not apply to the simulation models of Section 20.2.6 for the simulation of electromagnetic transients.

20.1.3 Requirements concerning power flow and fault current simulation

The power flow simulation model and fault current simulation model shall reproduce, within the voltage and frequency operating range conforming to the Specifications, the impact of the power generating facility on the following issues:

- 1) power flow of the power system, considering potential dependences, for example, between the production power and the voltage of the connection point,
- 2) voltage profile of the power system, considering the different modes and constraints of voltage control as well as potential compensation equipment,
- 3) fault currents.
- 20.1.4 Requirements concerning the dynamics simulation of power park modules

The model intended for dynamics simulation shall reproduce the operation of the power generating facility within the voltage and frequency operating range in accordance with the Specifications, taking into account the response and impact of the power generating facility on the following issues:

- 1) changes in the voltage amplitude and in its phase angle in conjunction with electromechanical transients,
- 2) electromechanical oscillations related to angle stability at frequencies 0.2–2 Hz following small and large signal disturbances,

101 (129)

UNOFFICIAL TRANSLATION

16.11.2018

- 3) high-speed (10 ms 10 s) transients related to voltage stability. These shall take into account the operation of the facility in conjunction with momentary voltage disturbances, and the dependence of the recovery of active power and the reactive power capacity on voltage.
- 20.1.5 Requirements concerning the verification and documentation of the modelling data

The data to be delivered for the modelling calculation shall be verified by comparing the modelling data, using the modelling results obtained, to the results of the commissioning testing of the power generating facility. The verification obligation of modelling data applies to power generating facilities in the scope presented in Tables <u>20.1</u> and <u>20.2</u>.

The data to be delivered for the modelling calculation shall be documented. The documentation shall be delivered as electronic documents to the relevant network operator. The documents to be submitted shall be clear and unambiguous in terms of their layout and structure. The documentation shall cover the following main issues:

- 1) The components of the power generating facility and the electricity network that connects the components
- 2) A block diagram of active power control and frequency control and the associated parameters
- 3) A block diagram of voltage control and reactive power control and the associated parameters
- A block diagram of any other additional power generating facility control functions or components and their function if these are relevant in terms of the Specifications
- 5) Instructions for the use and maintenance of the simulation model
- 6) Results of verification of modelling data:
 - a) report of the verification of the model,
 - b) comparison of the modelling results and the results of the commissioning testing in the scope presented in Table <u>20.1</u>,
 - c) measurement results of the commissioning testing in numerical format in the scope presented in Table <u>20.2</u> in so far as Table <u>20.1</u> obliges verification,
 - d) account of potential differences between the modelling results and the results of the commissioning testing.

16.11.2018

Item to be verified	Туре С	Туре D
Step response of voltage control of the power generating facility using two different slope values (both the	Х	X
increase and decrease in voltage)		
Reactive power capacity of the power	X	X
generating facility and the functioning	X	
of limiters that restrict the capacity		
Operation of additional control		Х
functions, such as POD (Section		
<u>18.3</u>).		
Fault-ride-through test 1)	Х	×

Table 20.1. Verification obligation of modelling data on wind power park modules by type.

¹ To be agreed on a case-by-case basis. If a fault-ride-through test for the power generating facility is not carried out, the functioning of the power generating facility in a local fault shall be demonstrated by means of simulation calculations.

Table 20.2. Measurement data on commissioning testing to be delivered in numerical format, to which measurement data the results calculated using the modelling data is compared.

Item to be verified	UPCC	P _{PCC}	Q _{PCC}	Signals		
Step response of voltage control of the power generating facility using	Х	Х	Х	Voltage setpoint		
two different slope values (both the						
increase and decrease in voltage)						
Reactive power capacity of the power	Х	Х	Х	Voltage setpoint		
generating facility and the functioning						
of limiters that restrict the capacity						
Operation of additional control	Х	Х	Х	To be agreed on		
functions, such as POD (Section				a case-by-case		
<u>18.3</u>)				basis.		
Fault-ride-through test	To be agreed on a case-by-case basis. If a fault-ride-					
_	through test for the power generating facility is not					
	carried out, the functioning of the power generating					
	facility in a local fault shall be demonstrated by means of					
	simulation calculations.					
Uvjv Connection point's volta	Connection point's voltage level					
P _{VJV} Active power of the pow	Active power of the power generating facility measured at the connection point					
Q _{VJV} Reactive power of the power generating facility measured at the connection point						

20.1.6 Specific study requirements

If conducting the specific studies requires utilising calculation programs applicable to electromagnetic transients, the simulation models of the power generating facility used in

UNOFFICIAL TRANSLATION

16.11.2018

the simulation shall be delivered to Fingrid as part of the final report of the specific study. The said simulation model shall be updated after the commissioning testing and delivered to Fingrid as part of the final documentation of the power generating facility.

20.1.7 Requirements for the simulation models of compensation devices

The simulation models for compensation devices related to the power generating facility project shall be agreed upon separately with Fingrid.

UNOFFICIAL TRANSLATION

16.11.2018

Appendix A: Compliance process monitoring tables for type D power generating facilities 21

21.1	ge 1 (Planning):					
		Data to be delivered	Data delivered	Data approved	Status of data exchange related to the Specifications	Comments
	1	General data			Approved	
	2	Technical data	\rightarrow	Ċ	Approved	
	3	Operating voltage and frequency range		Ś	Approved	
	4	Fault-ride-through capability (incl. fault-ride-through calculation)			Approved	•
	5	Active power control and frequency control	C		Approved	·
	6	House load and changes in production power	X	C.	Approved	
	7	Reactive power capacity of the power generating facility (incl. reactive power capacity calculation)	. (Approved	
	8	Voltage control and reactive power control (incl. voltage control step response calculation)	Ch	+	Approved	
	9	Protection setpoints of the power generating facility and impact on power quality			Approved	
	10	Data required for dynamic modelling			Approved	
~~~	11	Real-time measurement data and instrumentation			Approved	
	12	Specific study requirements			Approved	
	13	Power generating facility project's schedule and commissioning			Approved	
	14	Statement of compliance			Approved	
		Status of stage 1		Appr	oved	

#### UNOFFICIAL TRANSLATION

16.11.2018



### 21.2 Stage 2 (Commissioning and compliance):

#### UNOFFICIAL TRANSLATION

#### 16.11.2018

### 21.3 Stage 2: Comprehensive commissioning testing – synchronous power generating module

		Commissioning test	Availability of functionality has been verified	Operation in accordance with the Specifications has been verified	Status	Comments
	1	Limited frequency sensitive mode — overfrequency – (LFSM-O)			Unverified	0
	2	Limited frequency sensitive mode — underfrequency – (LFSM-U)		.+. €	Unverified	
	3	Frequency sensitive mode and rate of change of active power in disturbance state	0		Unverified	
	4	Rate of change of active power			Unverified	
	5	Transition to house load operation	6		Unverified	
	6	Voltage control step response test at no load		N	Unverified	
X	7	Voltage control tests while connected to the network		N	Unverified	
	8	Limiters and protection related to the functioning of voltage control	Chi		Unverified	
	9	Reactive power capacity test and restriction of active power			Unverified	
	10	Fault-ride-through capability	5		Unverified	
	11	Power system stabiliser tuning			Unverified	
~	Sta	tus of Stage 2 commissioning tests		Unverifie	d	

#### UNOFFICIAL TRANSLATION

#### 16.11.2018

#### Operation in Availability of accordance with the functionality has been Commissioning test Status Comments Specifications has been verified verified Limited frequency sensitive 1 mode - overfrequency -Unverified (LFSM-O) Limited frequency sensitive 2 mode - underfrequency -Unverified (LFSM-U) Frequency sensitive mode Unverified 3 ٠ 4 Rate of change of active power Unverified Constant voltage control 5 Unverified Constant reactive power 6 Unverified control 7 Constant power factor control Unverified Reactive power capacity test and restriction of active power 8 Unverified Rapid downward control of Unverified 9 active power ٠ 10 Starting and stopping Unverified 11 Fault-ride-through capability Unverified Additional damping control of 12 Unverified electromechanical oscillations Status of Stage 2 commissioning Unverified tests

### 21.4 Stage 2: Comprehensive commissioning testing – power park module
### UNOFFICIAL TRANSLATION

## 16.11.2018

## 21.5 Stage 3 (Review and approval):

	VJV2018 sub-entity	Action started	Action performed in an accepted manner	Status	Comments
	Energisation operational notification (EON)			Approved	S
	Stage 1			Approved	
	Interim operational notification (ION)	2.		Approved	
	Stage 2	5		Approved	
	Stage 3		<u> </u>	Approved	•
	Final operational notification (FON)			Approved	
	Compliance verification		Approver	d	
		3.			
~~~	V				


16.11.2018

22 Appendix B: Principles of voltage control setpoint configuration for power generating facilities

Contents

22 Appendix B: Principles of voltage control setpoint configuration for power facilities	generating
22.1 Introduction	
22.2 Voltage control	112
22.2.1 Method of voltage control	112
22.2.2 Voltage control setpoint	112
22.2.3 Main transformer rating	112
22.2.4 Operation of an on-load tap-changer in a main transformer	112
22.3 Slope and setpoint	113
22.3.1 Definition	113
22.3.2 Setpoint	114
22.4 Intra-plant reactive power control	115
22.5 Example diagrams of typical setups	116
22.5.1 Power park module	116
22.5.2 Synchronous power generating module – one generator	117
22.5.3 Synchronous power generating module – two or more generators	118

UNOFFICIAL TRANSLATION

16.11.2018

22.1 Introduction

These instructions were created to harmonise the principles of voltage control setpoint configuration for power generating facilities. Primarily, the instructions apply to power generating facilities with a rating of 10 MW or more that are connected to a 110 kV network. However, the principles shall also apply at lower voltage levels. At higher voltage levels, the instructions shall apply if the parties so agree. In special cases, the power generating facility owner and the relevant network operator shall agree on whether the instructions should apply.

All power generating facilities connected to the Finnish power system shall meet the Grid Code Specifications for Power Generating Facilities (VJV2018) set out by Fingrid Oyj. The Grid Code Specifications for Power Generating facilities specify a reactive power capacity for power generating facilities based on the connection method used, the rated capacity of the relevant facility and the voltage level specified for the relevant connection point.

In addition, Supply of reactive power and maintenance of reactive power reserves (an appendix to the Main grid contract, KVS2016), states the following: The reactive-power-generating capacity and intake capacity of a generator connected to the main grid with a rated voltage of 400 kV through a generator transformer shall, while the generator is connected to the grid, be reserved as reactive power reserve in full, with the exception of the reactive power consumed by the generator transformer and by the power plant's own consumption. With other generators over 10 MW, half of the reactive-power-generating capacity and intake capacity of the generator, measured at the generator voltage level, shall be reserved as reactive power reserve while the generator is connected to the grid.

The principles in these instructions have been defined with consideration to the requirements for available reactive power capacity and the obligation to reserve half of the reactive power capacity of generators for power system voltage control. The values specified in these instructions are based on results obtained through calculations as well as practical experience in systems testing and operation.

UNOFFICIAL TRANSLATION

16.11.2018

- 22.2 Voltage control
- 22.2.1 Method of voltage control

The primary method for adjusting the voltage of synchronous power generating modules is to adjust the terminal voltage of the generator.

For power park modules, the primary method for adjusting voltage is to adjust the reference point voltage of the power generating facility.

22.2.2 Voltage control setpoint

If the 110 kV main grid is used as the reference point, the voltage control setpoint should be set to a value of 118 kV, which is also the normal operating voltage of the main grid.

If the reference point for voltage control is at a lower voltage level, the voltage control setpoint should be set to a value that ensures that at a grid voltage of 118 kV, the reactive power fed through and taken from the main grid by the facility is as close to zero as possible.

By following the setpoints specified above, the voltage of the power system adjusts naturally towards the defined normal operating voltage setpoint, and there is no unnecessary transfer of reactive power between the elements contributing to voltage control.

22.2.3 Main transformer rating

In power generating facilities connected to the main grid, it is advisable to rate the highvoltage side of the power generating facility's main transformer (block or step-up transformer) based on the normal operating voltage of the main grid (118 kV).

22.2.4 Operation of an on-load tap-changer in a main transformer

It is not mandatory to install an on-load tap-changer; however, such a device can be useful for controlling voltage in a medium voltage network. If an on-load tap-changer is installed, the following operating principles shall be observed:

- When the voltage control reference point is at the high-voltage side of the main transformer, automatic voltage control by the on-load tap-changer shall be enabled.
- When the voltage control reference point is at the low-voltage side of the main transformer, automatic voltage control by the on-load tap-changer shall be disabled.

112 (129)

UNOFFICIAL TRANSLATION

16.11.2018

22.3 Slope and setpoint

Slope allows the power generating facilities that contribute to the voltage control of the power system to jointly equalise changes in reactive power generation caused by changes in power system voltage.

22.3.1 Definition

Slope is expressed as the relation between the change in voltage and the change in the reactive power generated by the relevant power generating facility. Slope shall be calculated using Equation 1 below:

$$slope = \frac{\frac{\Delta U}{U_n}}{\frac{\Delta Q}{Q_n}} \tag{1}$$

where ΔU is change in voltage, U_n is rated voltage, ΔQ is change in reactive power and Q_n is rated reactive power.

Slope functions as illustrated in Figure 22.1. The reactive power generation of a power generating facility changes as a function of the voltage in accordance with the slope of the voltage droop line.

Instead of voltage droop, the slope function can be based on reactive current droop. In this case, the control method must be compliant with the principles set out in these instructions while accounting for the underlying differences between the two control principles.

22.3.1.1 Definition of rated reactive power (Q_n)

Rated reactive power shall be determined in accordance with the VJV Specifications:

- When the voltage control reference point is at the high-voltage side of the main transformer, the rated capacity shall be $Q_n=0.33*P_n$ (rated active power).
- When the voltage control reference point is at the low-voltage side of the main transformer, the rated capacity shall be $Q_n=0.48*P_n$ (rated active power).

UNOFFICIAL TRANSLATION

16.11.2018

- 22.3.2 Setpoint
- 22.3.2.1 Voltage control reference point at the high-voltage side of the main transformer

When the voltage control reference point is at the high-voltage side of the main transformer, the slope setpoint shall be in the range of 4...8%. The recommended setpoint is 4%.

- 22.3.2.2 Voltage control reference point at the low-voltage side of the main transformer
- 22.3.2.2.1 One generator

When there is only one generator connected to the main transformer and the voltage control reference point is at the low-voltage side of the main transformer, the slope setpoint shall be in the range of 0...4%. The recommended setpoint is 0%.

If the short-circuit impedance (u_k) of the main transformer is greater than 12%, the setpoint value shall be set to 0%.

22.3.2.2.2 Two or more generators

When there are two or more generators connected to the main transformer and the voltage control reference point is at the low-voltage side of the main transformer, the slope setpoint shall be in the range of 2...4%. The recommended setpoint is 4%.

If the short-circuit impedance (u_k) of the main transformer is greater than 12%, the setpoint value shall be set to 2%.

UNOFFICIAL TRANSLATION

16.11.2018

22.4 Intra-plant reactive power control

Intra-plant reactive power control is allowed only when the facility connected to the main grid both generates and consumes power, integrated manufacturing facilities being an example. The annual internal energy consumption of the relevant facility shall correspond to at least 1/4 of its annual energy production, otherwise the connection shall be considered a pure power generating facility connection.

The purpose of intra-plant reactive power control is to compensate for the reactive power consumed as a result of local loads and to keep the transmission of reactive power over the connection point within the bounds specified in the relevant connection agreement. No more than half of the available reactive power capacity of each generator shall be reserved for intra-plant reactive power control.

When using intra-plant reactive power control, generator voltage control shall be configured as specified in sections 22.2 and 22.3 of this document. The intra-plant reactive power control and the generator's constant voltage control make up the cascade control. Intra-plant reactive power control serves as the master controller, providing a reference input for generator voltage control or the voltage control setpoint reference summing point. Consequently, the constant voltage control of generator terminal voltage is always active, and should not be bypassed or disabled by intra-plant reactive power control.

Intra-plant reactive power control shall be enabled only when the following conditions are met:

- The connection point's voltage is 116–120 kV
- No more than 50% of the available reactive power capacity of each generator shall be used for internal compensation by intra-plant reactive power control.
- The integration time for facility-specific reactive power control shall be long, ensuring that the control function obtains a new operating point 15 minutes after the change in reactive power.

A derogation from the principles set out in this instruction may be allowed for a compelling reason subject to approval by Fingrid. Fingrid must be informed of the use of intra-plant reactive power control.

UNOFFICIAL TRANSLATION

16.11.2018

22.5 Example diagrams of typical setups

This section provides examples of typical setup principles illustrated through diagrams.

22.5.1 Power park module

Figure 22.2 provides an example of the voltage control setup used in power park modules.

Figure 22.2. Schematic diagram of power park module voltage control.

UNOFFICIAL TRANSLATION

16.11.2018

22.5.2 Synchronous power generating module – one generator

Figure 22.3 provides an example of the voltage control setup used in synchronous power generating modules that have only one generator connected to the main transformer.

16.11.2018

22.5.3 Synchronous power generating module – two or more generators

Figure 22.4 provides an example of the voltage control setup used in a synchronous power generating module that has two or more generators connected to the main transformer.

Figure 22.4. Schematic diagram of voltage control used in a synchronous power generating module that includes two or more generators.

UNOFFICIAL TRANSLATION

16.11.2018

23 Appendix C: Tuning instructions for power system stabilisers used in generators connected to the Finnish power system

Contents

23 Appendix C: Tuning instructions for power system stabilisers used in generators	
connected to the Finnish power system	.119
23.1 Introduction	.120
23.2 Background information on power system stabilisers	.120
23.3 Key considerations	.121
23.4 PSS types	.121
23.5 Power system stabiliser tuning	.122
23.5.1 Operational testing for PSS equipment	.122
23.5.2 PSS output limiter	.122
23.5.3 Protection and alarms	.122
23.5.4 Washout filter	.122
23.5.5 Phase compensation tuning	.123
23.5.6 Gain configuration	.123
23.5.7 Commissioning testing	.124
23.6 Example of phase compensation simulation	.128

16.11.2018

23.1 Introduction

The purpose of this document is to describe the principles applicable to the tuning of power system stabilisers (PSS). The document does not provide specific tuning instructions for different equipment setups. The tuning principle provided in these instructions allows power generating facility owners to improve the capability of their facility's PSS to dampen both the local oscillation mode and the inter-area oscillations between their facility and the power system. The purpose of this document is to help experienced voltage control and PSS tuning professionals to create a procedure for tuning the equipment selected for the relevant equipment setup. These instructions should not be considered a stand-alone commissioning instruction document; instead, the setup and tuning of power system stabilisers shall always be planned and implemented in a project-specific manner.

23.2 Background information on power system stabilisers

The primary purpose of power system stabilisers (PSS) is to improve the damping of power oscillations present in the power system. Improved damping increases system security and increases transmission capacity. In the Nordic synchronous system, there are inter-area power oscillations in the range of 0.2...10 Hz. The most prevalent oscillation mode is approximately 0.3 Hz.

PSS functions through interaction with the voltage control of the excitation system. PSS modulates the voltage control setpoint and, consequently, the reactive power generated by the relevant generator, resulting in a change in generator shaft torque angle. Excitation properties, such as rapid response time and accurate tuning, are critical factors in PSS performance. The PSS must be tuned after the excitation system has been tuned and calibrated.

In modern excitation systems, the PSS is typically implemented as software integrated into the automatic voltage regulator (AVR). Accelerating power and synthetic speed (which is the integral of accelerating power) are calculated based on the AVR's terminal voltage and terminal current measurements.

The purpose of the PSS is to compensate for the phase shift between the generator and the excitation system. This is achieved by shifting the phase of the input signal. Phase compensation is achieved by tuning the PSS to compensate for the lag caused by the generator, the excitation system and the power system in a manner that allows the PSS to provide torque changes in phase with changes in shaft speed.

PSSs are often very inexpensive, especially if purchased with the excitation system. Certain manufacturers will supply the PSS with no additional cost as an integral part of the AVR.

Both upgrade contracts and contracts for building a new power generating facility shall include PSS tuning and the delivery of verified simulation models corresponding to those provided in the IEEE standard 421.5 model library.

UNOFFICIAL TRANSLATION

16.11.2018

23.3 Key considerations

Power system stabilisers must be tuned with care. To avoid equipment damage when tuning and commissioning power system stabilisers, the following issues shall be taken into consideration:

- There are both analogue and digital PSSs. Analogue and digital PSSs are usually tested using different test methods.
- If the wind turbine generator shaft has resonance frequencies below 20 Hz, a change in shaft torque modulated by the PSS may excite oscillations in the shaft. This can happen especially when speed is used as the input signal for the PSS. Usually, shaft oscillations are removed from the PSS input signal using a special hardware filter.
- The PSS may cause interference in the transient response of the excitation system. Consequently, PSS systems usually include output limiters.
- Underexcitation and overexcitation limiters may restrict the PSS operation. Any such limiters should be tuned so that they function in coordination with the PSS.
- When electrical power is used as the PSS input signal and there is a rapid change in the load, the PSS response may cause major reactive power oscillations in the generator response. Type PSS2A and PSS2B power system stabilisers can be tuned to better withstand changes in load.
- The PSS system shall be tuned in operating conditions where intra-plant mode damping is at its lowest level. Additionally, it must be verified that the PSS does not cause instability within the facility's normal operating band or during foreseeable fault conditions.

23.4 PSS types

There is a wide variety of power system stabiliser solutions utilising different input signals. Typical input signals include rotor speed, terminal voltage frequency, electrical power, accelerating power or some combination of the above.

Fingrid recommends the use of power system stabilisers of the type PSS2A or PSS2B dual-input that conform to standard IEEE 421.5. The block diagram for type PSS2B power system stabilisers is presented in Figure 23.1 below.

UNOFFICIAL TRANSLATION

16.11.2018

Figure 23.1. Block diagram for power system stabiliser PSS2B (IEE 421.5).

23.5 Power system stabiliser tuning

This section provides an overview of the principles used for tuning power system stabilisers. Power system stabilisers using different input signals are tuned in a different manner; consequently, system-specific tuning instructions may vary.

23.5.1 Operational testing for PSS equipment

The basic functionalities of the power system stabiliser, such as phase compensation and PSS limiter operation, shall be tested. Any potentiometers installed shall function in a stable manner and provide continuous control capability within the entire operating range.

23.5.2 PSS output limiter

Output limits shall be configured in a manner that prevents the PSS from increasing the terminal voltage of the generator over a predetermined value.

Before the PSS is switched on for the first time, limiter setpoints should be set to a very conservative value, such as +2% and -2% of generator terminal voltage.

Usually, the final setpoint values fall within the range of +5...10% and -5...10% of generator terminal voltage. The two setpoints can be asymmetrical.

23.5.3 Protection and alarms

PSS output protection should be adjusted in a manner that allows it to function in coordination with the output limiter. The system should generate an alarm in case PSS is disabled by the protection function.

23.5.4 Washout filter

The washout filter is used to filter low-frequency components from the PSS input signal. PSS phase compensation can be adjusted by changing its time constant. In frequency-based PSSs, using a short time constant increases the level of phase compensation and decreases the gain.

16.11.2018

When using type PSS2A and PSS2B power system stabilisers, a washout time constant lower than 10 seconds should be used, ensuring that low-frequency (<0.1 Hz) components are filtered rapidly from the PSS output. Using a lower time constant decreases the PSS's effect on system voltage during extended frequency disturbances (such as dips in production), especially in cases where the PSS would have a considerable amplification.

23.5.5 Phase compensation tuning

Phase compensation shall be tuned in accordance with the following principles:

- The system response of the generator and the excitation system shall be tested at low generator power without the PSS engaged. The frequency response test shall be performed by feeding a sine wave signal into the voltage control input and measuring the phase shift of the signal. The frequency response test shall be performed in the range of 0.2...3.0 Hz and repeated using, for example, ten different frequencies.
- The results of the frequency response test shall be verified for future simulation and the PSS shall be tuned to compensate for the measured phase shift.
- PSS phase shift compensation shall be tuned so that the phase shift in the 0.3...1.0 Hz inter-area oscillation frequency range is as close to 0 degrees as possible.
- Phase shift undercompensation is preferable to overcompensation. This is due to the fact that as the power system becomes weaker, the phase shift between the generator and the excitation system is also decreased.
 - If intra-plant stabilisation requires the PSS to be tuned to provide a phase shift other than 0 degrees at inter-area frequencies, the response of the entire PSS– AVR–generator system shall not generate a phase shift greater than 30 degrees within the 0.2...2.0 Hz frequency range.
- When tuning phase shift, it must be verified that the gain for low-frequency (<0.1 Hz) signals is equal to or lower than the gain for signals in the 0.2...2.0 Hz frequency range. In some cases, tuning face shift and the low-frequency signal amplification requires a compromise that makes it difficult to achieve phase shift undercompensation. In such cases, the phase shift of signals in the 0.2...2.0 Hz frequency range shall be kept at or below 30 degrees.</p>

23.5.6 Gain configuration

From the power system's perspective, using the highest possible gain provides the best damping. The recommended, and most reliable, way to determine the maximum safe gain is testing. To determine the gain margin, an amplification test using maximum overall gain for the system shall be performed. Consequently, the test should be performed at maximum capacity or at least at 80% of rated capacity.

UNOFFICIAL TRANSLATION

16.11.2018

Before starting to increase the PSS gain, the PSS must be in stable operation with the PSS limiters engaged and set to, for example, +5% and -5% of generator terminal voltage.

The gain shall be increased until the PSS output signal or terminal voltage begins to oscillate. The oscillation in terminal voltage is caused by noise amplified by PSS gain or excitation system mode gain. This maximum gain value shall be noted down and divided by two or three, resulting in solid, stable power system stabiliser operation.

The optimal gain and the inter-area oscillation mode damping performance of the PSS shall be verified through simulation.

- 23.5.7 Commissioning testing
- 23.5.7.1 Measured variables

At minimum, the variables listed below shall be measured and recorded during commissioning testing:

- excitation current,
- excitation voltage,
- terminal voltage,
- reactive power,
- active power,
- frequency,
 - PSS output signal
- test signal (sine wave signal fed to the voltage control input to enable phase shift measurement).

The PSS can only be tuned if sine wave signals with different frequencies can be fed to the input of the voltage controller for frequency response determination.

23.5.7.2 Example of a commissioning plan

This example illustrates the general steps that must be completed when commissioning a digital power system stabiliser. Typically, a power system stabiliser is commissioned as part of the power generating facility commissioning process. Consequently, PSS commissioning is usually incorporated into the relevant facility's commissioning schedule.

1. Voltage control and power system stabiliser simulation (simulation)

UNOFFICIAL TRANSLATION

16.11.2018

The relevant facility's voltage control and power system stabiliser shall be simulated and tuned using standard models (IEEE421.5).

2. Voltage control step response tests (generator disconnected from the network)

The step response tests for voltage control shall be performed with the generator idling and disconnected from the network. A step response test shall be performed at 2% and 10% both upwards and downwards.

3. Voltage control step response tests (generator connected to the network, running at minimum)

The step response tests for voltage control shall be performed with the generator running at minimum and connected to the network. A step response test shall be performed at 1% and 2% both upwards and downwards.

4. Frequency response measurement (generator connected to the network, running at minimum)

The frequency response of the automatic voltage regulator shall be measured with the generator running at minimum power and connected to the network, and the power system stabiliser is not enabled. The frequency response test shall be performed by feeding a sine wave signal to the voltage control input and measuring the phase shift of the signal from terminal voltage. The frequency response test shall be performed in the range of 0.2...3.0 Hz and repeated using, for example, ten different frequencies (0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5, 2.0 and 3.0 Hz).

5. Over- and underexcitation limiter testing (generator connected to the network, running at minimum)

The over- and underexcitation limiters shall be tested as follows. The limit value of the overexcitation limiter shall be gradually decreased from its setpoint value to verify that the limiter functions as intended by limiting the step response of voltage control. The limit value of the underexcitation limiter is gradually increased from its setpoint value to verify that the limiter functions as intended by limiting the step response of voltage control. The setpoints of the limiter shall be reverted to their design values or adjusted as necessary. The test shall also be repeated at least once at the rated capacity of the generator.

6. Power system stabiliser tuning (simulation)

The power system stabiliser simulation model shall be checked and tuned for step response test results.

The power system stabiliser shall be tuned to compensate for the previously measured phase shift. See Section $\underline{23.5.5}$.

7. Gain configuration (generator connected to the network, at 50% of rated capacity)

Gain shall be configured as follows (see Section 23.5.6):

1. Before the PSS is switched on for the first time, the PSS limiter setpoints should be set to a very conservative value, such as +2% and -2% of generator terminal

UNOFFICIAL TRANSLATION

16.11.2018

voltage. This allows the stepwise voltage change caused by an incorrect parameter configuration to be avoided.

- 2. The power system stabiliser gain (Ks1) shall be set to 0 and the power system stabiliser switched on for the first time, followed by an upwards and downwards step response test at 1%.
- 3. The power system stabiliser gain (Ks1) shall be set to 1, followed by an upwards and downwards step response test at 1%. If voltage control provides a stable response, the power system stabiliser limiter setpoints can be increased to, for example, +5% and -5% of the terminal voltage of the generator.
- 4. The gain value shall be set to 0 and increased slowly in small steps (such as 0, 1, 2, 4, 6, 8, 10, 12, 13, 14, 15). Each change in gain shall be followed by an upwards and downwards step response test at 2%. After each change in gain, both the PSS output signal and the generator terminal voltage shall be monitored. Once oscillation is registered, gain should no longer be increased.
- 5. The gain value at which oscillation is first registered shall be noted down. This maximum gain value shall be divided by two or three, resulting in solid, stable power system stabiliser operation. The value obtained in the manner described above is the nominal gain value.
 - The exact divisor (2...3) shall be determined by considering the ratio between the short circuit power of the connection point during normal operation and during operation in a weakened network state as well as the effect thereof on the operation of the PSS.

8. Compensated frequency configuration (generator connected to the network, at 50% of rated capacity)

In most power system stabilisers, the angular difference between the terminal voltage of the generator and the internal voltage source is compensated through reactance compensation (Xcomp or Xq). Typically, the compensation reactance value falls between the direct-axis transient reactance and the quadrature-axis transient reactance. Based on the compensated frequency value obtained as above, the phase shift of the power system stabiliser can be tuned to compensate for the actual change in the angular velocity of the rotor.

In order to obtain the correct compensation reactance value, the step response tests shall be repeated at nominal gain using alternative reactance values. The most suitable value shall be selected based on the response obtained through testing.

9. Gain configuration at maximum output (generator connected to the network, at \geq 80% of rated capacity)

- 1. The power system stabiliser shall be switched on and PSS gain (Ks1) shall be set to 0. Step response tests shall be performed at 2% both upwards and downwards.
- 2. The PSS gain (Ks1) shall be set to its nominal value, followed by an upwards and downwards step response test at 2%.

UNOFFICIAL TRANSLATION

16.11.2018

- 3. The PSS gain (Ks1) shall be set to twice its nominal value, followed by an upwards and downwards step response test at 2%.
- 4. If the step response tests specified above provide a stable response, PSS gain (Ks1) shall be reverted to its nominal value and used as the final setpoint. If the response of the PSS is unstable or there are oscillations in the response, or the results deviate significantly from the results of step response tests conducted at 50% of rated capacity, the PSS gain configuration shall be repeated from step 7 at maximum capacity.

10. Over- and underexcitation limiter testing at maximum capacity (generator connected to the network, at \ge 80% of the rated capacity)

The over- and underexcitation limiters shall be tested as follows. The limit value of the overexcitation limiter shall be gradually decreased from its setpoint value to verify that the limiter functions as intended by limiting the step response of voltage control. The limit value of the underexcitation limiter is gradually increased from its setpoint value to verify that the limiter functions as intended by limiting the step response of voltage control. The setpoints of the limiter shall be reverted to their design values or adjusted as necessary.

11. Continuous operation and final documentation

Once the power system stabiliser has been successfully tuned, it shall be left in operation. The parameters shall be saved and a power system stabiliser tuning report shall be prepared based on the results recorded during testing. The final parameter values used, the numerical results for the tests and the report shall be delivered to the relevant network operator and Fingrid.

UNOFFICIAL TRANSLATION

16.11.2018

23.6 Example of phase compensation simulation

Figure 23.2 shows the phase shift compensation requirement calculated using the shift function of the automatic voltage regulator of the excitation system; the compensation requirement based on actual measurement values; and the PSS phase shift after tuning.

Figure 23.2 indicates that there is a significant difference between the predetermined (obtained using the simulation model) and the actual (measured) phase shift compensation requirement. Consequently, frequency response testing should always be performed to ensure that the power system stabiliser has been appropriately tuned.

In the example illustrated in Figure 23.2, a compromise has been made during phase shift configuration; both phase shift and gain have been tuned to compensate for the facility's intra-plant mode as accurately as possible. Even with the compensation, the configuration is compliant with this tuning instruction. Furthermore, at all frequencies between 0.2...2.0 Hz, the shift of phase from the measured compensation requirement is less than 30 degrees. Additionally, this tuning configuration has allowed the use of low gain values at low frequencies while keeping the gain limit value at a moderate level (the power system stabiliser gain is shown in Figure 23.3).

Figure 23.2. Compensation required based on the simulation model, compensation required based on measurements and PSS phase shift after tuning.

UNOFFICIAL TRANSLATION

16.11.2018

129 (129)